Costunolide normalizes neuroinflammation and improves neurogenesis deficits in a mouse model of depression through inhibiting microglial Akt/mTOR/NF-κB pathway.
{"title":"Costunolide normalizes neuroinflammation and improves neurogenesis deficits in a mouse model of depression through inhibiting microglial Akt/mTOR/NF-κB pathway.","authors":"Shao-Qi Zhang, Qiao Deng, Cheng Tian, Huan-Huan Zhao, Li-Ying Yang, Xin-Wei Cheng, Guo-Ping Wang, Dong Liu","doi":"10.1038/s41401-025-01506-w","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation is crucial for the pathogenesis of major depression. Preclinical studies have shown the potential of anti-inflammatory agents, specifically costunolide (COS), correlate with antidepressant effects. In this study, we investigated the molecular mechanisms underlying the antidepressant actions of COS. Chronic restraint stress (CRS) was induced in male mice. The mice were treated with either intra-DG injection of COS (5 μM, 1 μL per side) or COS (20 mg/kg, i.p.) for 1 week. We showed that administration of COS through the both routes significantly ameliorated the depressive-like behavior in CRS-exposed mice. Furthermore, administration of COS significantly improved chronic stress-induced adult hippocampal neurogenesis deficits in the mice through attenuating microglia-derived neuroinflammation. We demonstrated that COS (5 μM) exerted anti-neuroinflammatory effects in LPS-treated BV2 cells via inhibiting microglial Akt/mTOR/NF-κB pathway; inactivation of mTOR/NF-κB/IL-1β pathway was required for the pro-neurogenic action of COS in CRS-exposed mice. Our results reveal the antidepressant mechanism of COS that is normalizing neuroinflammation to improve neurogenesis deficits, supporting anti-inflammatory agents as a potential therapeutic strategy for depression.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":"1864-1876"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01506-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation is crucial for the pathogenesis of major depression. Preclinical studies have shown the potential of anti-inflammatory agents, specifically costunolide (COS), correlate with antidepressant effects. In this study, we investigated the molecular mechanisms underlying the antidepressant actions of COS. Chronic restraint stress (CRS) was induced in male mice. The mice were treated with either intra-DG injection of COS (5 μM, 1 μL per side) or COS (20 mg/kg, i.p.) for 1 week. We showed that administration of COS through the both routes significantly ameliorated the depressive-like behavior in CRS-exposed mice. Furthermore, administration of COS significantly improved chronic stress-induced adult hippocampal neurogenesis deficits in the mice through attenuating microglia-derived neuroinflammation. We demonstrated that COS (5 μM) exerted anti-neuroinflammatory effects in LPS-treated BV2 cells via inhibiting microglial Akt/mTOR/NF-κB pathway; inactivation of mTOR/NF-κB/IL-1β pathway was required for the pro-neurogenic action of COS in CRS-exposed mice. Our results reveal the antidepressant mechanism of COS that is normalizing neuroinflammation to improve neurogenesis deficits, supporting anti-inflammatory agents as a potential therapeutic strategy for depression.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.