{"title":"Combined use of long short-term memory neural network and quantum computation for hierarchical forecasting of locational marginal prices","authors":"Xin Huang, Guozhong Liu, Jiajia Huan, Shuxin Luo, Jing Qiu, Feiyan Qin, Yunxia Xu","doi":"10.1049/enc2.70004","DOIUrl":null,"url":null,"abstract":"<p>Accurate locational marginal price forecasting (LMPF) is crucial for the efficient allocation of resources. Nevertheless, the sudden changes in LMP make it inadequate for many existing long short-term memory (LSTM) network-based prediction models to achieve the required accuracy for practical applications. This study adopts a hierarchical method of three layers based on double quantum-inspired grey wolf optimisation (QGWO) to improve the LSTM model (HD-QGWO-LSTM) for a one-step LMPF. The top layer completes the data processing. The middle layer is a QGWO-optimised support vector machine (SVM) for classifing whether LMPs are price spikes. The bottom laver is a double QGWO-improved LSTM (QGWO-LSTM) model for a real LMPF, where one QGWO-LSTM is for the spike LMPF and the other is for the non-spike LMPF. To address the issue of excessively long training times during the design of the LSTM network structure and parameter selection, a QGWO algorithm is proposed and used to optimise four LSTM parameters. The simulation results on the New England electricity market show that the HD-QGWO-LSTM method achieves similar prediction accuracy to other four LSTM-based methods. The results also validate that the QGWO algorithm significantly reduces time consumption while ensuring optimisation effectiveness when optimising SVM and LSTM.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"6 1","pages":"51-63"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate locational marginal price forecasting (LMPF) is crucial for the efficient allocation of resources. Nevertheless, the sudden changes in LMP make it inadequate for many existing long short-term memory (LSTM) network-based prediction models to achieve the required accuracy for practical applications. This study adopts a hierarchical method of three layers based on double quantum-inspired grey wolf optimisation (QGWO) to improve the LSTM model (HD-QGWO-LSTM) for a one-step LMPF. The top layer completes the data processing. The middle layer is a QGWO-optimised support vector machine (SVM) for classifing whether LMPs are price spikes. The bottom laver is a double QGWO-improved LSTM (QGWO-LSTM) model for a real LMPF, where one QGWO-LSTM is for the spike LMPF and the other is for the non-spike LMPF. To address the issue of excessively long training times during the design of the LSTM network structure and parameter selection, a QGWO algorithm is proposed and used to optimise four LSTM parameters. The simulation results on the New England electricity market show that the HD-QGWO-LSTM method achieves similar prediction accuracy to other four LSTM-based methods. The results also validate that the QGWO algorithm significantly reduces time consumption while ensuring optimisation effectiveness when optimising SVM and LSTM.