Combined use of long short-term memory neural network and quantum computation for hierarchical forecasting of locational marginal prices

Xin Huang, Guozhong Liu, Jiajia Huan, Shuxin Luo, Jing Qiu, Feiyan Qin, Yunxia Xu
{"title":"Combined use of long short-term memory neural network and quantum computation for hierarchical forecasting of locational marginal prices","authors":"Xin Huang,&nbsp;Guozhong Liu,&nbsp;Jiajia Huan,&nbsp;Shuxin Luo,&nbsp;Jing Qiu,&nbsp;Feiyan Qin,&nbsp;Yunxia Xu","doi":"10.1049/enc2.70004","DOIUrl":null,"url":null,"abstract":"<p>Accurate locational marginal price forecasting (LMPF) is crucial for the efficient allocation of resources. Nevertheless, the sudden changes in LMP make it inadequate for many existing long short-term memory (LSTM) network-based prediction models to achieve the required accuracy for practical applications. This study adopts a hierarchical method of three layers based on double quantum-inspired grey wolf optimisation (QGWO) to improve the LSTM model (HD-QGWO-LSTM) for a one-step LMPF. The top layer completes the data processing. The middle layer is a QGWO-optimised support vector machine (SVM) for classifing whether LMPs are price spikes. The bottom laver is a double QGWO-improved LSTM (QGWO-LSTM) model for a real LMPF, where one QGWO-LSTM is for the spike LMPF and the other is for the non-spike LMPF. To address the issue of excessively long training times during the design of the LSTM network structure and parameter selection, a QGWO algorithm is proposed and used to optimise four LSTM parameters. The simulation results on the New England electricity market show that the HD-QGWO-LSTM method achieves similar prediction accuracy to other four LSTM-based methods. The results also validate that the QGWO algorithm significantly reduces time consumption while ensuring optimisation effectiveness when optimising SVM and LSTM.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"6 1","pages":"51-63"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate locational marginal price forecasting (LMPF) is crucial for the efficient allocation of resources. Nevertheless, the sudden changes in LMP make it inadequate for many existing long short-term memory (LSTM) network-based prediction models to achieve the required accuracy for practical applications. This study adopts a hierarchical method of three layers based on double quantum-inspired grey wolf optimisation (QGWO) to improve the LSTM model (HD-QGWO-LSTM) for a one-step LMPF. The top layer completes the data processing. The middle layer is a QGWO-optimised support vector machine (SVM) for classifing whether LMPs are price spikes. The bottom laver is a double QGWO-improved LSTM (QGWO-LSTM) model for a real LMPF, where one QGWO-LSTM is for the spike LMPF and the other is for the non-spike LMPF. To address the issue of excessively long training times during the design of the LSTM network structure and parameter selection, a QGWO algorithm is proposed and used to optimise four LSTM parameters. The simulation results on the New England electricity market show that the HD-QGWO-LSTM method achieves similar prediction accuracy to other four LSTM-based methods. The results also validate that the QGWO algorithm significantly reduces time consumption while ensuring optimisation effectiveness when optimising SVM and LSTM.

Abstract Image

长短期记忆神经网络与量子计算相结合的区位边际价格分层预测
准确的区位边际价格预测对资源的有效配置至关重要。然而,LMP的突然变化使得许多现有的基于长短期记忆(LSTM)网络的预测模型无法达到实际应用所需的精度。本研究采用基于双量子启发灰狼优化(QGWO)的三层分层方法对LSTM模型(HD-QGWO-LSTM)进行一步LMPF改进。顶层完成数据处理。中间层是qgwo优化的支持向量机(SVM),用于分类lmp是否为价格峰值。底层是一个用于实际LMPF的双qgwo改进LSTM (QGWO-LSTM)模型,其中一个QGWO-LSTM用于尖峰LMPF,另一个用于非尖峰LMPF。针对LSTM网络结构设计和参数选择过程中训练时间过长的问题,提出了QGWO算法,并利用该算法对LSTM的4个参数进行了优化。新英格兰电力市场的仿真结果表明,HD-QGWO-LSTM方法的预测精度与其他4种基于lstm的方法相似。结果还验证了QGWO算法在优化SVM和LSTM时,在保证优化效果的同时显著减少了时间消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信