S. Hartwig, C. v. Onzenoodt, D. Engel, P. Hermosilla, T. Ropinski
{"title":"HPSCAN: Human Perception-Based Scattered Data Clustering","authors":"S. Hartwig, C. v. Onzenoodt, D. Engel, P. Hermosilla, T. Ropinski","doi":"10.1111/cgf.15275","DOIUrl":null,"url":null,"abstract":"<p>Cluster separation is a task typically tackled by widely used clustering techniques, such as k-means or DBSCAN. However, these algorithms are based on non-perceptual metrics, and our experiments demonstrate that their output does not reflect human cluster perception. To bridge the gap between human cluster perception and machine-computed clusters, we propose HPSCAN, a learning strategy that operates directly on scattered data. To learn perceptual cluster separation on such data, we crowdsourced the labeling of <span></span><math></math> bivariate (scatterplot) datasets to 384 human participants. We train our HPSCAN model on these human-annotated data. Instead of rendering these data as scatterplot images, we used their <i>x</i> and <i>y</i> point coordinates as input to a modified PointNet++ architecture, enabling direct inference on point clouds. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate the perceptual agreement of cluster separation for real-world data. We also report the training and evaluation protocol for HPSCAN and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. We explore predicting point-wise human agreement to detect ambiguities. Finally, we compare our approach to 10 established clustering techniques and demonstrate that HPSCAN is capable of generalizing to unseen and out-of-scope data.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15275","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Cluster separation is a task typically tackled by widely used clustering techniques, such as k-means or DBSCAN. However, these algorithms are based on non-perceptual metrics, and our experiments demonstrate that their output does not reflect human cluster perception. To bridge the gap between human cluster perception and machine-computed clusters, we propose HPSCAN, a learning strategy that operates directly on scattered data. To learn perceptual cluster separation on such data, we crowdsourced the labeling of bivariate (scatterplot) datasets to 384 human participants. We train our HPSCAN model on these human-annotated data. Instead of rendering these data as scatterplot images, we used their x and y point coordinates as input to a modified PointNet++ architecture, enabling direct inference on point clouds. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate the perceptual agreement of cluster separation for real-world data. We also report the training and evaluation protocol for HPSCAN and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. We explore predicting point-wise human agreement to detect ambiguities. Finally, we compare our approach to 10 established clustering techniques and demonstrate that HPSCAN is capable of generalizing to unseen and out-of-scope data.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.