Study on the forecasting of two cold surge events from the viewpoint of maritime transport

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Chen Chen, Haoyu Chen, Kenji Sasa
{"title":"Study on the forecasting of two cold surge events from the viewpoint of maritime transport","authors":"Chen Chen,&nbsp;Haoyu Chen,&nbsp;Kenji Sasa","doi":"10.1002/met.70029","DOIUrl":null,"url":null,"abstract":"<p>Cold surges can significantly affect maritime transportation safety, owing to the strong wind, significant temperature drop, as well as dense fog. Therefore, it is crucial to make an accurate prediction of meteorological phenomenon in the maritime regions during cold surges. The present study evaluates the performance of planetary boundary layer (PBL) and land surface schemes in Weather Research and Forecasting (WRF) model, specifically for the wind (wind speed and direction) and fog (temperature, dew point temperature, and relative humidity), during two cold surge events that occurred in November 2022, in the Bohai Bay Area, China. To make a thorough investigation of those complex meteorological processes, the WRF model was configured over Bohai Bay with a high spatial resolution of 2 km in the horizontal direction, and results were verified using three accessible meteorological stations around the Shandong Peninsula. Our studies demonstrate that the WRF tends to perform better in strong winds than in weak ones, particularly in the simulation of wind direction. Besides, Mellor–Yamada Nakanishi Niino Level 2.5 (MYNN2.5) and Yonsei University Scheme (YSU) PBL schemes demonstrate superior performance in simulating wind speed and sea fog, respectively, compared with the Noah-MP scheme. Unified Noah demonstrates superior performance in dew point temperature and humidity compared with both Noah-MP and 5-layer thermal diffusion schemes, whereas Noah-MP excels in temperature performance. Finally, we utilize the optimal results produced by the WRF model and integrate them with the risk thresholds for ship navigation. This allows us to visualize the spatiotemporal distribution of risks associated with strong winds and fog during navigation in the Bohai Bay area. The abovementioned findings are supposed to be helpful for make more accurate weather forecast of strong wind and dense fog in future cold surge events, from the viewpoint of a safe maritime transportation.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70029","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cold surges can significantly affect maritime transportation safety, owing to the strong wind, significant temperature drop, as well as dense fog. Therefore, it is crucial to make an accurate prediction of meteorological phenomenon in the maritime regions during cold surges. The present study evaluates the performance of planetary boundary layer (PBL) and land surface schemes in Weather Research and Forecasting (WRF) model, specifically for the wind (wind speed and direction) and fog (temperature, dew point temperature, and relative humidity), during two cold surge events that occurred in November 2022, in the Bohai Bay Area, China. To make a thorough investigation of those complex meteorological processes, the WRF model was configured over Bohai Bay with a high spatial resolution of 2 km in the horizontal direction, and results were verified using three accessible meteorological stations around the Shandong Peninsula. Our studies demonstrate that the WRF tends to perform better in strong winds than in weak ones, particularly in the simulation of wind direction. Besides, Mellor–Yamada Nakanishi Niino Level 2.5 (MYNN2.5) and Yonsei University Scheme (YSU) PBL schemes demonstrate superior performance in simulating wind speed and sea fog, respectively, compared with the Noah-MP scheme. Unified Noah demonstrates superior performance in dew point temperature and humidity compared with both Noah-MP and 5-layer thermal diffusion schemes, whereas Noah-MP excels in temperature performance. Finally, we utilize the optimal results produced by the WRF model and integrate them with the risk thresholds for ship navigation. This allows us to visualize the spatiotemporal distribution of risks associated with strong winds and fog during navigation in the Bohai Bay area. The abovementioned findings are supposed to be helpful for make more accurate weather forecast of strong wind and dense fog in future cold surge events, from the viewpoint of a safe maritime transportation.

Abstract Image

从海运角度对两次寒潮事件的预报研究
冷潮由于风力大、气温下降明显、大雾等原因,会对海上运输安全产生重大影响。因此,对海洋寒潮期间的气象现象进行准确的预报是至关重要的。本文对2022年11月发生在中国渤海湾地区的两次寒潮事件中,气象研究与预报(WRF)模式中行星边界层(PBL)和地面方案的性能进行了评价,特别是对风(风速和风向)和雾(温度、露点温度和相对湿度)的影响。为了深入研究这些复杂的气象过程,在渤海湾上空配置了WRF模式,在水平方向上具有2 km的高空间分辨率,并利用山东半岛周围3个可达气象站对结果进行了验证。我们的研究表明,WRF在强风中比在弱风中表现得更好,特别是在风向的模拟中。此外,Mellor-Yamada Nakanishi Niino Level 2.5 (MYNN2.5)和Yonsei University Scheme (YSU) PBL方案在模拟风速和海雾方面分别优于Noah-MP方案。与诺亚- mp和5层热扩散方案相比,统一诺亚在露点温度和湿度方面表现优异,而诺亚- mp在温度方面表现优异。最后,我们利用WRF模型的最优结果,并将其与船舶航行的风险阈值相结合。这使我们能够可视化渤海湾地区航行过程中与强风和大雾相关的风险的时空分布。从海上运输安全的角度出发,本文的研究结果有助于对未来寒潮事件中强风浓雾天气的准确预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信