DeepFracture: A Generative Approach for Predicting Brittle Fractures with Neural Discrete Representation Learning

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yuhang Huang, Takashi Kanai
{"title":"DeepFracture: A Generative Approach for Predicting Brittle Fractures with Neural Discrete Representation Learning","authors":"Yuhang Huang,&nbsp;Takashi Kanai","doi":"10.1111/cgf.70002","DOIUrl":null,"url":null,"abstract":"<p>In the field of brittle fracture animation, generating realistic destruction animations using physics-based simulation methods is computationally expensive. While techniques based on Voronoi diagrams or pre-fractured patterns are effective for real-time applications, they fail to incorporate collision conditions when determining fractured shapes during runtime. This paper introduces a novel learning-based approach for predicting fractured shapes based on collision dynamics at runtime. Our approach seamlessly integrates realistic brittle fracture animations with rigid body simulations, utilising boundary element method (BEM) brittle fracture simulations to generate training data. To integrate collision scenarios and fractured shapes into a deep learning framework, we introduce generative geometric segmentation, distinct from both instance and semantic segmentation, to represent 3D fragment shapes. We propose an eight-dimensional latent code to address the challenge of optimising multiple discrete fracture pattern targets that share similar continuous collision latent codes. This code will follow a discrete normal distribution corresponding to a specific fracture pattern within our latent impulse representation design. This adaptation enables the prediction of fractured shapes using neural discrete representation learning. Our experimental results show that our approach generates considerably more detailed brittle fractures than existing techniques, while the computational time is typically reduced compared to traditional simulation methods at comparable resolutions.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of brittle fracture animation, generating realistic destruction animations using physics-based simulation methods is computationally expensive. While techniques based on Voronoi diagrams or pre-fractured patterns are effective for real-time applications, they fail to incorporate collision conditions when determining fractured shapes during runtime. This paper introduces a novel learning-based approach for predicting fractured shapes based on collision dynamics at runtime. Our approach seamlessly integrates realistic brittle fracture animations with rigid body simulations, utilising boundary element method (BEM) brittle fracture simulations to generate training data. To integrate collision scenarios and fractured shapes into a deep learning framework, we introduce generative geometric segmentation, distinct from both instance and semantic segmentation, to represent 3D fragment shapes. We propose an eight-dimensional latent code to address the challenge of optimising multiple discrete fracture pattern targets that share similar continuous collision latent codes. This code will follow a discrete normal distribution corresponding to a specific fracture pattern within our latent impulse representation design. This adaptation enables the prediction of fractured shapes using neural discrete representation learning. Our experimental results show that our approach generates considerably more detailed brittle fractures than existing techniques, while the computational time is typically reduced compared to traditional simulation methods at comparable resolutions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信