Characterising the resilience of electro–hydrogen coupled system via convex hull estimation

Siyuan Chang, Gengyin Li, Tiance Zhang, Ming Zhou, Qiteng Hong, Jianxiao Wang
{"title":"Characterising the resilience of electro–hydrogen coupled system via convex hull estimation","authors":"Siyuan Chang,&nbsp;Gengyin Li,&nbsp;Tiance Zhang,&nbsp;Ming Zhou,&nbsp;Qiteng Hong,&nbsp;Jianxiao Wang","doi":"10.1049/enc2.70002","DOIUrl":null,"url":null,"abstract":"<p>Frequent outbreaks of severe natural disasters underscore the importance of power system resilience. With high efficiency and rapid response, hydrogen energy can enhance power system resilience during such incidents. Traditional post-event resilience assessment methods, which are event-triggered, focus on a single indicator, leading to an ambiguous portrayal of the power capacity of coupled systems. To address this limitation, based on a two-stage electro–hydrogen coupled model, the concept of electro–hydrogen coupled region (EHCR) is proposed to illustrate the potential relationships between resilience indicators, exploring the accurate power capacity of the coupled system to critical loads during extreme events. The convex hull estimation is employed to determine the EHCR. A max–min diagnostic model is introduced as the convergence criterion for resilience margins. An external cutting-plane algorithm is developed to interactively obtain the EHCR by progressively eliminating non-capacity regions of the current space based on the diagnostic model. The efficacy of the proposed methods is validated through case studies based on an IEEE 30-bus and Belgium 20-node coupled system under ice disaster scenarios.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"6 1","pages":"13-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Frequent outbreaks of severe natural disasters underscore the importance of power system resilience. With high efficiency and rapid response, hydrogen energy can enhance power system resilience during such incidents. Traditional post-event resilience assessment methods, which are event-triggered, focus on a single indicator, leading to an ambiguous portrayal of the power capacity of coupled systems. To address this limitation, based on a two-stage electro–hydrogen coupled model, the concept of electro–hydrogen coupled region (EHCR) is proposed to illustrate the potential relationships between resilience indicators, exploring the accurate power capacity of the coupled system to critical loads during extreme events. The convex hull estimation is employed to determine the EHCR. A max–min diagnostic model is introduced as the convergence criterion for resilience margins. An external cutting-plane algorithm is developed to interactively obtain the EHCR by progressively eliminating non-capacity regions of the current space based on the diagnostic model. The efficacy of the proposed methods is validated through case studies based on an IEEE 30-bus and Belgium 20-node coupled system under ice disaster scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信