MANDALA—Visual Exploration of Anomalies in Industrial Multivariate Time Series Data

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
J. Suschnigg, B. Mutlu, G. Koutroulis, H. Hussain, T. Schreck
{"title":"MANDALA—Visual Exploration of Anomalies in Industrial Multivariate Time Series Data","authors":"J. Suschnigg,&nbsp;B. Mutlu,&nbsp;G. Koutroulis,&nbsp;H. Hussain,&nbsp;T. Schreck","doi":"10.1111/cgf.70000","DOIUrl":null,"url":null,"abstract":"<p>The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (<b>M</b>ultivariate <b>AN</b>omaly <b>D</b>etection <b>A</b>nd exp<b>L</b>or<b>A</b>tion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (Multivariate ANomaly Detection And expLorAtion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain.

Abstract Image

mandala -工业多变量时间序列数据异常的可视化探索
多变量时间序列数据异常的检测、描述和理解是许多工业领域的重要任务。自动化数据分析提供了许多工具和算法来检测异常,而可视化界面使领域专家能够交互式地探索和分析数据,以利用他们的专业知识获得见解。多变量时间序列中的异常在数据集中的维度、时间发生和长度方面可能是多种多样的。它们的检测和描述取决于分析人员的领域、任务和背景知识。因此,异常分析通常是一个未明确的问题。我们提出了一种名为MANDALA(多元异常检测和探索)的可视化分析工具,它使用核密度估计来检测异常,并为用户提供可视化的方法来探索和解释它们。为了评估我们的算法的有效性,我们使用由GutenTAG异常和时间序列生成器生成的合成数据集来评估其识别不同类型异常的能力。我们的方法允许用户首先交互式地定义正常数据。接下来,他们可以探索异常候选者,它们的相关维度和它们的时间范围。我们精心设计的可视化分析组件包括一个定制的散点图矩阵,具有语义缩放功能,通过六边形分形图可视化正常数据,并将候选异常数据覆盖为散点图。此外,该系统还支持同时涉及所有维度的更广泛范围的分析或仅涉及维度对的较小范围的分析。我们定义了重要异常模式类型的分类,它可以指导交互分析过程。我们的系统的有效性通过与汽车领域的领域专家进行的工业数据用例场景和利用航空领域的公共数据集进行的用户研究来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信