Almost complex blow-ups and positive closed (1, 1)-forms on 4-dimensional almost complex manifolds

IF 0.6 3区 数学 Q3 MATHEMATICS
Richard Hind, Tommaso Sferruzza, Adriano Tomassini
{"title":"Almost complex blow-ups and positive closed (1, 1)-forms on 4-dimensional almost complex manifolds","authors":"Richard Hind,&nbsp;Tommaso Sferruzza,&nbsp;Adriano Tomassini","doi":"10.1007/s10455-024-09978-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let (<i>M</i>, <i>J</i>) be a 2<i>n</i>-dimensional almost complex manifold and let <span>\\(x\\in M\\)</span>. We define the notion of <i>almost complex blow-up</i> of (<i>M</i>, <i>J</i>) at <i>x</i>. We prove the existence of almost complex blow-ups at <i>x</i> under suitable assumptions on the almost complex structure <i>J</i> and we provide explicit examples of such a construction. We note that almost complex blow-ups are unique if they exist. When (<i>M</i>, <i>J</i>) is a 4-dimensional almost complex manifold, we give an obstruction on <i>J</i> to the existence of almost complex blow-ups at a point and prove that the almost complex blow-up at a point of a compact almost Kähler manifold is almost Kähler.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09978-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (MJ) be a 2n-dimensional almost complex manifold and let \(x\in M\). We define the notion of almost complex blow-up of (MJ) at x. We prove the existence of almost complex blow-ups at x under suitable assumptions on the almost complex structure J and we provide explicit examples of such a construction. We note that almost complex blow-ups are unique if they exist. When (MJ) is a 4-dimensional almost complex manifold, we give an obstruction on J to the existence of almost complex blow-ups at a point and prove that the almost complex blow-up at a point of a compact almost Kähler manifold is almost Kähler.

四维几乎复杂流形上的几乎复杂爆破和正闭(1,1)-形式
设(M, J)是2n维几乎复流形,设\(x\in M\)。我们定义了(M, J)在x点的几乎复杂爆破的概念。我们在几乎复杂结构J的适当假设下证明了在x点的几乎复杂爆破的存在性,并给出了这种构造的显式例子。我们注意到,几乎复杂的爆炸是独一无二的,如果它们存在的话。当(M, J)是一个四维几乎复杂流形时,给出了J在一点上存在几乎复杂爆炸的一个障碍,并证明了紧致几乎Kähler流形的一点上的几乎复杂爆炸是几乎Kähler。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信