Mathew Yastremski, Paul J. Godin, Nouralhoda Bayat, Sungeun Oh, Ziheng Chang, Katanya B. Kuntz, Daniel Oblak, Thomas Jennewein
{"title":"Estimating the impact of light pollution on quantum communication between QEYSSat and Canadian quantum ground station sites","authors":"Mathew Yastremski, Paul J. Godin, Nouralhoda Bayat, Sungeun Oh, Ziheng Chang, Katanya B. Kuntz, Daniel Oblak, Thomas Jennewein","doi":"10.1140/epjqt/s40507-025-00331-8","DOIUrl":null,"url":null,"abstract":"<div><p>Satellite to ground quantum communication typically operates at night to reduce background signals, however it remains susceptible to noise from light pollution of the night sky. In this study we compare several methodologies for determining whether a Quantum Ground Station (QGS) site is viable for exchanging quantum signals with the upcoming Quantum Encryption and Science Satellite (QEYSSat) mission. We conducted ground site characterization studies at three locations in Canada: Waterloo, Ontario, Calgary, Alberta, and Priddis, Alberta. Using different methods we estimate the background counts expected to leak into the satellite-ground quantum channel, and determined whether the noise levels could prevent a quantum key transfer. We also investigate how satellite data recorded from the Visible Infrared Imaging Radiometer Suite (VIIRS) can help estimate conditions of a particular site, and find reasonable agreement with the locally recorded data. Our results indicate that the Waterloo, Calgary, and Priddis QGS sites should allow both quantum uplinks and downlinks with QEYSSat, despite their proximity to urban centres. Furthermore, our approach allows the use of satellite borne instrument data (VIIRS) to remotely and efficiently determine the potential of a ground site.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00331-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00331-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite to ground quantum communication typically operates at night to reduce background signals, however it remains susceptible to noise from light pollution of the night sky. In this study we compare several methodologies for determining whether a Quantum Ground Station (QGS) site is viable for exchanging quantum signals with the upcoming Quantum Encryption and Science Satellite (QEYSSat) mission. We conducted ground site characterization studies at three locations in Canada: Waterloo, Ontario, Calgary, Alberta, and Priddis, Alberta. Using different methods we estimate the background counts expected to leak into the satellite-ground quantum channel, and determined whether the noise levels could prevent a quantum key transfer. We also investigate how satellite data recorded from the Visible Infrared Imaging Radiometer Suite (VIIRS) can help estimate conditions of a particular site, and find reasonable agreement with the locally recorded data. Our results indicate that the Waterloo, Calgary, and Priddis QGS sites should allow both quantum uplinks and downlinks with QEYSSat, despite their proximity to urban centres. Furthermore, our approach allows the use of satellite borne instrument data (VIIRS) to remotely and efficiently determine the potential of a ground site.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.