\(C^{\infty }\) Well-Posedness of Higher Order Hyperbolic Pseudo-Differential Equations with Multiplicities

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Claudia Garetto, Bolys Sabitbek
{"title":"\\(C^{\\infty }\\) Well-Posedness of Higher Order Hyperbolic Pseudo-Differential Equations with Multiplicities","authors":"Claudia Garetto,&nbsp;Bolys Sabitbek","doi":"10.1007/s10440-025-00717-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study higher order hyperbolic pseudo-differential equations with variable multiplicities. We work in arbitrary space dimension and we assume that the principal part is time-dependent only. We identify sufficient conditions on the roots and the lower order terms (Levi conditions) under which the corresponding Cauchy problem is <span>\\(C^{\\infty }\\)</span> well-posed. This is achieved via transformation into a first order system, reduction into upper-triangular form and application of suitable Fourier integral operator methods previously developed for hyperbolic non-diagonalisable systems. We also discuss how our result compares with the literature on second and third order hyperbolic equations.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"196 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-025-00717-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00717-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study higher order hyperbolic pseudo-differential equations with variable multiplicities. We work in arbitrary space dimension and we assume that the principal part is time-dependent only. We identify sufficient conditions on the roots and the lower order terms (Levi conditions) under which the corresponding Cauchy problem is \(C^{\infty }\) well-posed. This is achieved via transformation into a first order system, reduction into upper-triangular form and application of suitable Fourier integral operator methods previously developed for hyperbolic non-diagonalisable systems. We also discuss how our result compares with the literature on second and third order hyperbolic equations.

\(C^{\infty }\) 具有多重性的高阶双曲型伪微分方程的适定性
本文研究了具有变多重度的高阶双曲型伪微分方程。我们在任意的空间维度上工作,并且我们假设主体部分只与时间相关。我们确定了根和低阶项(Levi条件)上的充分条件,在这些条件下对应的柯西问题\(C^{\infty }\)适定。这是通过转换为一阶系统,化简为上三角形式和应用先前为双曲不可对角系统开发的合适的傅立叶积分算子方法来实现的。我们还讨论了我们的结果与文献中关于二阶和三阶双曲方程的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信