A Novel Size-Aware Local Contrast Measure for Tiny Infrared Target Detection

Lihao Ye;Jing Liu;Jianting Zhang;Jiayi Ju;Yuan Wang
{"title":"A Novel Size-Aware Local Contrast Measure for Tiny Infrared Target Detection","authors":"Lihao Ye;Jing Liu;Jianting Zhang;Jiayi Ju;Yuan Wang","doi":"10.1109/LGRS.2025.3542219","DOIUrl":null,"url":null,"abstract":"Detecting tiny infrared (IR) targets in diverse complex backgrounds faces many challenges, e.g., extremely few features of the tiny targets, cluttered backgrounds, and interferences from surrounding similar objects. In this letter, we propose a novel size-aware local contrast measure (SALCM) method to detect tiny IR targets. First, to tackle the problem of extremely few features, various local features are extracted through monogenic signal decomposition, which can effectively enrich the potential features of the tiny targets. Second, the Canny detector is used to precisely delineate the contours of multiple candidate targets in the fused image to estimate the exact shapes and sizes of candidate targets. This ensures that the proposed method adapts to both tiny targets and small targets (with relatively larger sizes). Finally, local contrast enhancement is used to highlight the target regions while suppressing the background clutters and interferences from surrounding similar objects, leading to accurate detection. The experimental results on six real IR target datasets demonstrate the superiority of the proposed method in terms of target enhancement, background suppression, and detection accuracy, for detecting IR targets of various sizes.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902003/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting tiny infrared (IR) targets in diverse complex backgrounds faces many challenges, e.g., extremely few features of the tiny targets, cluttered backgrounds, and interferences from surrounding similar objects. In this letter, we propose a novel size-aware local contrast measure (SALCM) method to detect tiny IR targets. First, to tackle the problem of extremely few features, various local features are extracted through monogenic signal decomposition, which can effectively enrich the potential features of the tiny targets. Second, the Canny detector is used to precisely delineate the contours of multiple candidate targets in the fused image to estimate the exact shapes and sizes of candidate targets. This ensures that the proposed method adapts to both tiny targets and small targets (with relatively larger sizes). Finally, local contrast enhancement is used to highlight the target regions while suppressing the background clutters and interferences from surrounding similar objects, leading to accurate detection. The experimental results on six real IR target datasets demonstrate the superiority of the proposed method in terms of target enhancement, background suppression, and detection accuracy, for detecting IR targets of various sizes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信