Junzhong Ji , Xiaoyu Zhang , Cuicui Yang , Xiang Li , Guangyuan Sui
{"title":"A similar environment transfer strategy for dynamic multiobjective optimization","authors":"Junzhong Ji , Xiaoyu Zhang , Cuicui Yang , Xiang Li , Guangyuan Sui","doi":"10.1016/j.ins.2025.122018","DOIUrl":null,"url":null,"abstract":"<div><div>Solving dynamic multiobjective optimization problems (DMOPs) is extremely challenging due to the need to address multiple conflicting objectives that change over time. Transfer prediction-based strategies typically leverage solutions from historical environments to generate an initial population for a new environment. However, these strategies often overlook the similarity between the historical and new environments, which can negatively impact the quality of the initial population. To address this issue, we propose a similar environment transfer strategy. Firstly, we select Pareto-optimal solutions from a randomly generated population in the new environment to form a prior Pareto set (PS). The prior PS is expand by oversampling sparse solutions. Then, we apply the maximum mean discrepancy (MMD) to measure the discrepancy between the prior PS and the PS from each historical environment. The historical environment with the smallest MMD is identified as the similar environment. Finally, we use solutions from this similar environment to establish a kernelized easy transfer learning model, which is employed to predict the quality of random solutions in the new environment. The initial population is formed by combining excellent solutions predicted by the model with the prior PS. Experimental results demonstrate that the proposed strategy significantly outperforms several state-of-the-art strategies.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"707 ","pages":"Article 122018"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525001501","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Solving dynamic multiobjective optimization problems (DMOPs) is extremely challenging due to the need to address multiple conflicting objectives that change over time. Transfer prediction-based strategies typically leverage solutions from historical environments to generate an initial population for a new environment. However, these strategies often overlook the similarity between the historical and new environments, which can negatively impact the quality of the initial population. To address this issue, we propose a similar environment transfer strategy. Firstly, we select Pareto-optimal solutions from a randomly generated population in the new environment to form a prior Pareto set (PS). The prior PS is expand by oversampling sparse solutions. Then, we apply the maximum mean discrepancy (MMD) to measure the discrepancy between the prior PS and the PS from each historical environment. The historical environment with the smallest MMD is identified as the similar environment. Finally, we use solutions from this similar environment to establish a kernelized easy transfer learning model, which is employed to predict the quality of random solutions in the new environment. The initial population is formed by combining excellent solutions predicted by the model with the prior PS. Experimental results demonstrate that the proposed strategy significantly outperforms several state-of-the-art strategies.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.