Samarium monosulfide ceramics: Preparation and properties

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Aleksei A. Polkovnikov , Ilya O. Yurev , Maxim S. Molokeev , Aleksandr P. Tyutyunnik , Roza I. Gulyaeva , Nikita A. Shulaev , Maxim V. Kudomanov , Vitaly G. Bamburov , Oleg V. Andreev
{"title":"Samarium monosulfide ceramics: Preparation and properties","authors":"Aleksei A. Polkovnikov ,&nbsp;Ilya O. Yurev ,&nbsp;Maxim S. Molokeev ,&nbsp;Aleksandr P. Tyutyunnik ,&nbsp;Roza I. Gulyaeva ,&nbsp;Nikita A. Shulaev ,&nbsp;Maxim V. Kudomanov ,&nbsp;Vitaly G. Bamburov ,&nbsp;Oleg V. Andreev","doi":"10.1016/j.jeurceramsoc.2025.117319","DOIUrl":null,"url":null,"abstract":"<div><div>Samarium monosulfide (SmS) is a unique tensometric material. For the first time, SmS ceramics for magnetron sputtering films were synthesized. A powder of up to 100 mol% SmS was produced via the reaction of γ-Sm<sub>2</sub>S<sub>2.98</sub> with excess metallic samarium vapor. The conditions for target and side reactions were determined. SmS ceramic targets were fabricated by pressing under standard conditions and annealed at high temperatures. Ceramic properties—density, hardness, and compressive strength—improved with increasing pressing pressure. Conditions for stable magnetron discharge over the SmS target were established. The composition of films deposited on silicon substrates varies with the substrate-to-target angle, transitioning from SmS<sub>1.9</sub> to SmS. During magnetron discharge, SmS dissociates into samarium and sulfur, with their distribution approximated by angular equations. High-mass Sm and SmS particles distribute radially, while sulfur concentration forms an ellipse elongated toward low angles. The deposition angle range for SmS was determined.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 10","pages":"Article 117319"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925001396","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Samarium monosulfide (SmS) is a unique tensometric material. For the first time, SmS ceramics for magnetron sputtering films were synthesized. A powder of up to 100 mol% SmS was produced via the reaction of γ-Sm2S2.98 with excess metallic samarium vapor. The conditions for target and side reactions were determined. SmS ceramic targets were fabricated by pressing under standard conditions and annealed at high temperatures. Ceramic properties—density, hardness, and compressive strength—improved with increasing pressing pressure. Conditions for stable magnetron discharge over the SmS target were established. The composition of films deposited on silicon substrates varies with the substrate-to-target angle, transitioning from SmS1.9 to SmS. During magnetron discharge, SmS dissociates into samarium and sulfur, with their distribution approximated by angular equations. High-mass Sm and SmS particles distribute radially, while sulfur concentration forms an ellipse elongated toward low angles. The deposition angle range for SmS was determined.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信