Wulin Song , Xue Han , Huanlin Cheng, Qi Tang, Huacai Wang, Songtao Ji
{"title":"Structure of the fuel-cladding chemical interaction (FCCI) layer of a high burnup Zr-1Nb nuclear fuel cladding","authors":"Wulin Song , Xue Han , Huanlin Cheng, Qi Tang, Huacai Wang, Songtao Ji","doi":"10.1016/j.jnucmat.2025.155699","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive characterization of the Fuel Cladding Chemical Interaction (FCCI) layer in a Zr-1Nb alloy with a burnup of 41GWd·tU<sup>−1</sup> has been performed utilizing primary techniques including Optical Microscopy (OM), Transmission Electron Microscopy (TEM), and Transmission Kikuchi Diffraction (TKD). The results indicate that the FCCI layer characterized in this study is mainly composed of tetragonal zirconia on both the cladding and fuel sides, with monoclinic zirconia in between. Additionally, the strong fiber texture in monoclinic and tetragonal zirconia aligns well with that in the water-side oxide film. The orientation relationships between α-Zr, monoclinic zirconia and tetragonal zirconia are (<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>011) <sub>α-Zr</sub> || (010) <sub>m-ZrO2</sub> and (10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>)<sub>m-ZrO2</sub> || (100) <sub>t-ZrO2</sub>. It appears that the dominant force for texture development in the FCCI formed on this alloy is the α-Zr to m-ZrO<sub>2</sub> and m-ZrO<sub>2</sub> to t-ZrO<sub>2</sub> transformation stress which is independent with metal substrate orientation.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"607 ","pages":"Article 155699"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525000947","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive characterization of the Fuel Cladding Chemical Interaction (FCCI) layer in a Zr-1Nb alloy with a burnup of 41GWd·tU−1 has been performed utilizing primary techniques including Optical Microscopy (OM), Transmission Electron Microscopy (TEM), and Transmission Kikuchi Diffraction (TKD). The results indicate that the FCCI layer characterized in this study is mainly composed of tetragonal zirconia on both the cladding and fuel sides, with monoclinic zirconia in between. Additionally, the strong fiber texture in monoclinic and tetragonal zirconia aligns well with that in the water-side oxide film. The orientation relationships between α-Zr, monoclinic zirconia and tetragonal zirconia are (011) α-Zr || (010) m-ZrO2 and (10)m-ZrO2 || (100) t-ZrO2. It appears that the dominant force for texture development in the FCCI formed on this alloy is the α-Zr to m-ZrO2 and m-ZrO2 to t-ZrO2 transformation stress which is independent with metal substrate orientation.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.