Robust low frequency seismic bandwidth extension with a U-net and synthetic training data

P. Zwartjes, J. Yoo
{"title":"Robust low frequency seismic bandwidth extension with a U-net and synthetic training data","authors":"P. Zwartjes,&nbsp;J. Yoo","doi":"10.1016/j.aiig.2025.100109","DOIUrl":null,"url":null,"abstract":"<div><div>This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data. Traditional seismic data often lack both high and low frequencies, which are essential for detailed geological interpretation and various geophysical applications. Low frequency data is particularly valuable for reducing wavelet sidelobes and improving full waveform inversion (FWI). Conventional methods for bandwidth extension include seismic deconvolution and sparse inversion, which have limitations in recovering low frequencies. The study explores the potential of the U-net, which has been successful in other geophysical applications such as noise attenuation and seismic resolution enhancement. The novelty in our approach is that we do not rely on computationally expensive finite difference modelling to create training data. Instead, our synthetic training data is created from individual randomly perturbed events with variations in bandwidth, making it more adaptable to different data sets compared to previous deep learning methods. The method was tested on both synthetic and real seismic data, demonstrating effective low frequency reconstruction and sidelobe reduction. With a synthetic full waveform inversion to recover a velocity model and a seismic amplitude inversion to estimate acoustic impedance we demonstrate the validity and benefit of the proposed method. Overall, the study presents a robust approach to seismic bandwidth extension using deep learning, emphasizing the importance of diverse and well-designed but computationally inexpensive synthetic training data.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100109"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654412500005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work focuses on enhancing low frequency seismic data using a convolutional neural network trained on synthetic data. Traditional seismic data often lack both high and low frequencies, which are essential for detailed geological interpretation and various geophysical applications. Low frequency data is particularly valuable for reducing wavelet sidelobes and improving full waveform inversion (FWI). Conventional methods for bandwidth extension include seismic deconvolution and sparse inversion, which have limitations in recovering low frequencies. The study explores the potential of the U-net, which has been successful in other geophysical applications such as noise attenuation and seismic resolution enhancement. The novelty in our approach is that we do not rely on computationally expensive finite difference modelling to create training data. Instead, our synthetic training data is created from individual randomly perturbed events with variations in bandwidth, making it more adaptable to different data sets compared to previous deep learning methods. The method was tested on both synthetic and real seismic data, demonstrating effective low frequency reconstruction and sidelobe reduction. With a synthetic full waveform inversion to recover a velocity model and a seismic amplitude inversion to estimate acoustic impedance we demonstrate the validity and benefit of the proposed method. Overall, the study presents a robust approach to seismic bandwidth extension using deep learning, emphasizing the importance of diverse and well-designed but computationally inexpensive synthetic training data.
鲁棒低频地震带宽扩展与U-net和综合训练数据
这项工作的重点是使用在合成数据上训练的卷积神经网络来增强低频地震数据。传统的地震数据往往缺乏高频和低频,这是详细的地质解释和各种地球物理应用所必需的。低频数据对于减少小波副瓣和改善全波形反演(FWI)特别有价值。传统的带宽扩展方法包括地震反褶积和稀疏反演,但在恢复低频方面存在局限性。该研究探索了U-net的潜力,U-net已经在其他地球物理应用中取得了成功,例如噪声衰减和地震分辨率提高。我们的方法的新颖之处在于,我们不依赖于计算昂贵的有限差分建模来创建训练数据。相反,我们的合成训练数据是由带宽变化的单个随机扰动事件创建的,与以前的深度学习方法相比,它更能适应不同的数据集。在合成地震和真实地震数据上进行了测试,结果表明该方法具有有效的低频重建和旁瓣抑制效果。通过合成全波形反演恢复速度模型和地震振幅反演估计声阻抗,验证了该方法的有效性和优越性。总的来说,该研究提出了一种利用深度学习扩展地震带宽的鲁棒方法,强调了多样化和精心设计但计算成本低廉的合成训练数据的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信