Lithography-based additive manufacturing of steel metamaterials: effect of sintering temperature on shape distortion, microstructure and mechanical properties

Ruslan Melentiev , Ahmed Wagih , Gilles Lubineau , Carlos A. Grande
{"title":"Lithography-based additive manufacturing of steel metamaterials: effect of sintering temperature on shape distortion, microstructure and mechanical properties","authors":"Ruslan Melentiev ,&nbsp;Ahmed Wagih ,&nbsp;Gilles Lubineau ,&nbsp;Carlos A. Grande","doi":"10.1016/j.procir.2025.01.014","DOIUrl":null,"url":null,"abstract":"<div><div>Lithography metal manufacturing (LMM) is an emerging sinter-based additive manufacturing (AM) technology for support-free 3D printing of extremely complex parts with micrometric resolution on a decimeter scale. Although the printing phase of LMM is well-established, the sintering stage is challenging due to either high porosity or melting-induced deformation, particularly in thin-walled lattices and metamaterials. This study investigates the effects of sintering temperature on shape distortion, surface morphology, chemistry, porosity, microstructure, and mechanical properties of 316L stainless steel auxetic metamaterials 3D printed using LMM and sintered in a furnace customized for precise temperature control. Our results show that the fully dense grain microstructure with high plasticity can be sintering within 1300 – 1325 °C range. Going beyond this temperature results in shape distortion and embrittlement of the steel metamaterials. The previously recommended range of sintering temperatures for 316L steel, 1360 - 1380 °C need revision.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"132 ","pages":"Pages 80-85"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithography metal manufacturing (LMM) is an emerging sinter-based additive manufacturing (AM) technology for support-free 3D printing of extremely complex parts with micrometric resolution on a decimeter scale. Although the printing phase of LMM is well-established, the sintering stage is challenging due to either high porosity or melting-induced deformation, particularly in thin-walled lattices and metamaterials. This study investigates the effects of sintering temperature on shape distortion, surface morphology, chemistry, porosity, microstructure, and mechanical properties of 316L stainless steel auxetic metamaterials 3D printed using LMM and sintered in a furnace customized for precise temperature control. Our results show that the fully dense grain microstructure with high plasticity can be sintering within 1300 – 1325 °C range. Going beyond this temperature results in shape distortion and embrittlement of the steel metamaterials. The previously recommended range of sintering temperatures for 316L steel, 1360 - 1380 °C need revision.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信