Cell adhesion on substrates with variable curvature: Effects on genetic transcription processes

IF 7 2区 医学 Q1 BIOLOGY
Óscar L. Rodríguez-Montaño, Lorenzo Santoro, Lorenzo Vaiani, Luciano Lamberti, Antonio E. Uva, Antonio Boccaccio
{"title":"Cell adhesion on substrates with variable curvature: Effects on genetic transcription processes","authors":"Óscar L. Rodríguez-Montaño,&nbsp;Lorenzo Santoro,&nbsp;Lorenzo Vaiani,&nbsp;Luciano Lamberti,&nbsp;Antonio E. Uva,&nbsp;Antonio Boccaccio","doi":"10.1016/j.compbiomed.2025.109917","DOIUrl":null,"url":null,"abstract":"<div><div>Several studies suggest that changes in nuclear morphology due to forces and deformations as result of cell adhesion on biological substrates can induce molecular streaming through nuclear pore openings and alter chromatin structure. The condensed state of chromatin hinders transcription and replication, while its decompaction, induced by adhesion, plays a key role in differentiation. However, assessing nuclear stress/strain <em>in vivo</em> remains challenging, and the impact of substrate curvature on nuclear mechanics and chromatin structures is still unclear.</div><div>In this study, we developed an axisymmetric finite element model of a mesenchymal stem cell adhering to substrates with different curvatures to analyze nuclear stress distribution and identify locations where adhesion-induced gene expression may occur. Results reveal a nuclear stress field with principal stresses in radial and circumferential directions, leading to chromatin decondensation and nuclear pore opening. The predicted forces acting on chromatin fibers, estimated and compared with experimental data, remain slightly below 5 pN—the threshold at which internucleosomal attraction is disrupted, triggering chromatin condensation-decondensation transition—. During early spreading, nuclear forces achieved through adhesion on convex substrates approach this threshold more closely than in concave or flat cases.</div><div>These findings provide insights for tissue engineering and regenerative medicine, where early control of stem cell fate through substrate design is crucial. Understanding how mesenchymal stem cells respond to substrate curvature could lead to improved biomaterial surface topographies for guiding cell behavior. Tailoring curvature and mechanical properties may enhance early lineage commitment, optimizing regenerative strategies for tissue repair and organ regeneration.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109917"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002689","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several studies suggest that changes in nuclear morphology due to forces and deformations as result of cell adhesion on biological substrates can induce molecular streaming through nuclear pore openings and alter chromatin structure. The condensed state of chromatin hinders transcription and replication, while its decompaction, induced by adhesion, plays a key role in differentiation. However, assessing nuclear stress/strain in vivo remains challenging, and the impact of substrate curvature on nuclear mechanics and chromatin structures is still unclear.
In this study, we developed an axisymmetric finite element model of a mesenchymal stem cell adhering to substrates with different curvatures to analyze nuclear stress distribution and identify locations where adhesion-induced gene expression may occur. Results reveal a nuclear stress field with principal stresses in radial and circumferential directions, leading to chromatin decondensation and nuclear pore opening. The predicted forces acting on chromatin fibers, estimated and compared with experimental data, remain slightly below 5 pN—the threshold at which internucleosomal attraction is disrupted, triggering chromatin condensation-decondensation transition—. During early spreading, nuclear forces achieved through adhesion on convex substrates approach this threshold more closely than in concave or flat cases.
These findings provide insights for tissue engineering and regenerative medicine, where early control of stem cell fate through substrate design is crucial. Understanding how mesenchymal stem cells respond to substrate curvature could lead to improved biomaterial surface topographies for guiding cell behavior. Tailoring curvature and mechanical properties may enhance early lineage commitment, optimizing regenerative strategies for tissue repair and organ regeneration.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信