Prediction of task occurrence distribution for automated shop floor planning using multi-output support vector regressor

Unais Sait , Marco Frego , Antonella De Angeli , Angelika Peer
{"title":"Prediction of task occurrence distribution for automated shop floor planning using multi-output support vector regressor","authors":"Unais Sait ,&nbsp;Marco Frego ,&nbsp;Antonella De Angeli ,&nbsp;Angelika Peer","doi":"10.1016/j.procir.2025.01.032","DOIUrl":null,"url":null,"abstract":"<div><div>The digitalization of shop floors has led to a significant shift towards automated planning and scheduling to improve resource management and production efficiency. This paper presents a comparative study of the use of machine learning approaches for predicting the distribution of task occurrence in activity-based shop floors. This study leverages real data extracted from Enterprise Resource Planning (ERP) and Manufacturing Execution Systems (MES), and historical data of shopfloor-level processes. Furthermore, three regression-based models, namely a fe-nearest Neighbor Regressor (KNR), Random Forest Regressor (RFR), and Multi-output Support Vector Regressor (M-SVR) are evaluated on the extracted data. The study identifies M-SVR as the best-performing model when hyperparameters were optimised through model optimisation via grid search and 5-fold cross-validation. The comparative analysis includes evaluation metrics, providing insight into effective task prediction in shop floor environments. This paper highlights the importance of data-driven methods for the prediction of manufacturing processes and the digitalization of shop floors.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"132 ","pages":"Pages 191-196"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The digitalization of shop floors has led to a significant shift towards automated planning and scheduling to improve resource management and production efficiency. This paper presents a comparative study of the use of machine learning approaches for predicting the distribution of task occurrence in activity-based shop floors. This study leverages real data extracted from Enterprise Resource Planning (ERP) and Manufacturing Execution Systems (MES), and historical data of shopfloor-level processes. Furthermore, three regression-based models, namely a fe-nearest Neighbor Regressor (KNR), Random Forest Regressor (RFR), and Multi-output Support Vector Regressor (M-SVR) are evaluated on the extracted data. The study identifies M-SVR as the best-performing model when hyperparameters were optimised through model optimisation via grid search and 5-fold cross-validation. The comparative analysis includes evaluation metrics, providing insight into effective task prediction in shop floor environments. This paper highlights the importance of data-driven methods for the prediction of manufacturing processes and the digitalization of shop floors.
基于多输出支持向量回归器的自动化车间规划任务发生分布预测
车间的数字化导致了向自动化计划和调度的重大转变,以提高资源管理和生产效率。本文介绍了使用机器学习方法预测基于活动的车间中任务发生的分布的比较研究。本研究利用了从企业资源规划(ERP)和制造执行系统(MES)中提取的真实数据,以及车间级流程的历史数据。在此基础上,对提取的数据进行了铁近邻回归(KNR)、随机森林回归(RFR)和多输出支持向量回归(M-SVR)三种回归模型的评价。当通过网格搜索和5倍交叉验证的模型优化来优化超参数时,该研究确定M-SVR是性能最佳的模型。比较分析包括评估指标,提供对车间环境中有效任务预测的见解。本文强调了数据驱动方法对制造过程预测和车间数字化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信