{"title":"Exponential synchronization of high-dimensional Kuramoto models on the complex sphere based on directed graphs","authors":"Xinyun Liu , Wei Li , Xueyan Li , Yushi Shi","doi":"10.1016/j.physd.2025.134578","DOIUrl":null,"url":null,"abstract":"<div><div>Synchronization of populations is a common phenomenon in nature. The high-dimensional Kuramoto model is one of the most typical continuous system models for studying synchronization phenomena in multi-individual systems. Due to Lohe’s remarkable work on models of multi-individual systems, the high-dimensional Kuramoto models are also called the Lohe models, and the Lohe Hermitian sphere (LHS) model is a generalization of the Lohe models in the complex space. In this paper, we study the exponential synchronization problem of the LHS models based on directed graphs. By introducing the synchronization error function, we have developed a set of synchronization error dynamic equations for the identical oscillators using matrix Riccati differential equations. The system of synchronization error dynamic equations is studied, a total error function is constructed, and exponential synchronization of the LHS model on the unit complex sphere is demonstrated. An approximate linearization of the error dynamics equations is performed, to obtain the exponential decay rate of the system. For the LHS model with nonidentical oscillators on the unit complex sphere, using the synchronization error function, it is shown that practical synchronization can be achieved when the connection graph of the system is strongly connected.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"475 ","pages":"Article 134578"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000570","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronization of populations is a common phenomenon in nature. The high-dimensional Kuramoto model is one of the most typical continuous system models for studying synchronization phenomena in multi-individual systems. Due to Lohe’s remarkable work on models of multi-individual systems, the high-dimensional Kuramoto models are also called the Lohe models, and the Lohe Hermitian sphere (LHS) model is a generalization of the Lohe models in the complex space. In this paper, we study the exponential synchronization problem of the LHS models based on directed graphs. By introducing the synchronization error function, we have developed a set of synchronization error dynamic equations for the identical oscillators using matrix Riccati differential equations. The system of synchronization error dynamic equations is studied, a total error function is constructed, and exponential synchronization of the LHS model on the unit complex sphere is demonstrated. An approximate linearization of the error dynamics equations is performed, to obtain the exponential decay rate of the system. For the LHS model with nonidentical oscillators on the unit complex sphere, using the synchronization error function, it is shown that practical synchronization can be achieved when the connection graph of the system is strongly connected.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.