{"title":"FRoundation: Are foundation models ready for face recognition?","authors":"Tahar Chettaoui , Naser Damer , Fadi Boutros","doi":"10.1016/j.imavis.2025.105453","DOIUrl":null,"url":null,"abstract":"<div><div>Foundation models are predominantly trained in an unsupervised or self-supervised manner on highly diverse and large-scale datasets, making them broadly applicable to various downstream tasks. In this work, we investigate for the first time whether such models are suitable for the specific domain of face recognition (FR). We further propose and demonstrate the adaptation of these models for FR across different levels of data availability, including synthetic data. Extensive experiments are conducted on multiple foundation models and datasets of varying scales for training and fine-tuning, with evaluation on a wide range of benchmarks. Our results indicate that, despite their versatility, pre-trained foundation models tend to underperform in FR in comparison with similar architectures trained specifically for this task. However, fine-tuning foundation models yields promising results, often surpassing models trained from scratch, particularly when training data is limited. For example, after fine-tuning only on 1K identities, DINOv2 ViT-S achieved average verification accuracy on LFW, CALFW, CPLFW, CFP-FP, and AgeDB30 benchmarks of 87.10%, compared to 64.70% achieved by the same model and without fine-tuning. While training the same model architecture, ViT-S, from scratch on 1k identities reached 69.96%. With access to larger-scale FR training datasets, these performances reach 96.03% and 95.59% for the DINOv2 and CLIP ViT-L models, respectively. In comparison to the ViT-based architectures trained from scratch for FR, fine-tuned same architectures of foundation models achieve similar performance while requiring lower training computational costs and not relying on the assumption of extensive data availability. We further demonstrated the use of synthetic face data, showing improved performances over both pre-trained foundation and ViT models. Additionally, we examine demographic biases, noting slightly higher biases in certain settings when using foundation models compared to models trained from scratch. We release our code and pre-trained models’ weights at <span><span>github.com/TaharChettaoui/FRoundation</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"156 ","pages":"Article 105453"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000411","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Foundation models are predominantly trained in an unsupervised or self-supervised manner on highly diverse and large-scale datasets, making them broadly applicable to various downstream tasks. In this work, we investigate for the first time whether such models are suitable for the specific domain of face recognition (FR). We further propose and demonstrate the adaptation of these models for FR across different levels of data availability, including synthetic data. Extensive experiments are conducted on multiple foundation models and datasets of varying scales for training and fine-tuning, with evaluation on a wide range of benchmarks. Our results indicate that, despite their versatility, pre-trained foundation models tend to underperform in FR in comparison with similar architectures trained specifically for this task. However, fine-tuning foundation models yields promising results, often surpassing models trained from scratch, particularly when training data is limited. For example, after fine-tuning only on 1K identities, DINOv2 ViT-S achieved average verification accuracy on LFW, CALFW, CPLFW, CFP-FP, and AgeDB30 benchmarks of 87.10%, compared to 64.70% achieved by the same model and without fine-tuning. While training the same model architecture, ViT-S, from scratch on 1k identities reached 69.96%. With access to larger-scale FR training datasets, these performances reach 96.03% and 95.59% for the DINOv2 and CLIP ViT-L models, respectively. In comparison to the ViT-based architectures trained from scratch for FR, fine-tuned same architectures of foundation models achieve similar performance while requiring lower training computational costs and not relying on the assumption of extensive data availability. We further demonstrated the use of synthetic face data, showing improved performances over both pre-trained foundation and ViT models. Additionally, we examine demographic biases, noting slightly higher biases in certain settings when using foundation models compared to models trained from scratch. We release our code and pre-trained models’ weights at github.com/TaharChettaoui/FRoundation.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.