Dynamic simulation optimization of the hydrogen liquefaction process

IF 4.2 3区 工程技术 Q2 ENERGY & FUELS
Juntao Fu , Jiahao Tang , Jianlu Zhu , Guocong Wang , Yuxing Li , Hui Han
{"title":"Dynamic simulation optimization of the hydrogen liquefaction process","authors":"Juntao Fu ,&nbsp;Jiahao Tang ,&nbsp;Jianlu Zhu ,&nbsp;Guocong Wang ,&nbsp;Yuxing Li ,&nbsp;Hui Han","doi":"10.1016/j.ngib.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid hydrogen has attracted much attention due to its high energy storage density and suitability for long-distance transportation. An efficient hydrogen liquefaction process is the key to obtaining liquid hydrogen. In an effort to determine the parameter optimization of the hydrogen liquefaction process, this paper employed process simulation software Aspen HYSYS to simulate the hydrogen liquefaction process. By establishing a dynamic model of the unit module, this study carried out dynamic simulation optimization based on the steady-state process and process parameters of the hydrogen liquefaction process and analyzed the dynamic characteristics of the process. Based on the pressure drop characteristic experiment, an equation for the pressure drop in the heat exchanger was proposed. The heat transfer of hydrogen conversion was simulated and analyzed, and its accuracy was verified by comparison with the literature. The dynamic simulation of a plate-fin heat exchanger was carried out by coupling heat transfer simulation and the pressure drop experiment. The results show that the increase in inlet temperature (5 °C and 10 °C) leads to an increase in specific energy consumption (0.65 % and 1.29 %, respectively) and a decrease in hydrogen liquefaction rate (0.63 % and 2.88 %, respectively). When the inlet pressure decreases by 28.57 %, the hydrogen temperature of the whole liquefaction process decreases and the specific energy consumption increases by 52.94 %. The research results are of great significance for improving the operating efficiency of the refrigeration cycle and guiding the actual liquid hydrogen production.</div></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":"12 1","pages":"Pages 16-25"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854025000026","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid hydrogen has attracted much attention due to its high energy storage density and suitability for long-distance transportation. An efficient hydrogen liquefaction process is the key to obtaining liquid hydrogen. In an effort to determine the parameter optimization of the hydrogen liquefaction process, this paper employed process simulation software Aspen HYSYS to simulate the hydrogen liquefaction process. By establishing a dynamic model of the unit module, this study carried out dynamic simulation optimization based on the steady-state process and process parameters of the hydrogen liquefaction process and analyzed the dynamic characteristics of the process. Based on the pressure drop characteristic experiment, an equation for the pressure drop in the heat exchanger was proposed. The heat transfer of hydrogen conversion was simulated and analyzed, and its accuracy was verified by comparison with the literature. The dynamic simulation of a plate-fin heat exchanger was carried out by coupling heat transfer simulation and the pressure drop experiment. The results show that the increase in inlet temperature (5 °C and 10 °C) leads to an increase in specific energy consumption (0.65 % and 1.29 %, respectively) and a decrease in hydrogen liquefaction rate (0.63 % and 2.88 %, respectively). When the inlet pressure decreases by 28.57 %, the hydrogen temperature of the whole liquefaction process decreases and the specific energy consumption increases by 52.94 %. The research results are of great significance for improving the operating efficiency of the refrigeration cycle and guiding the actual liquid hydrogen production.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Gas Industry B
Natural Gas Industry B Earth and Planetary Sciences-Geology
CiteScore
5.80
自引率
6.10%
发文量
46
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信