{"title":"Predicting the structure-altering mechanisms of disease variants","authors":"Matteo Arnaudi , Mattia Utichi , Matteo Tiberti , Elena Papaleo","doi":"10.1016/j.sbi.2025.102994","DOIUrl":null,"url":null,"abstract":"<div><div>Missense variants can affect the severity of disease, choice of treatment, and treatment outcomes. While the number of known variants has been increasing at a rapid pace, available evidence of their clinical effect has been lagging behind, constituting a challenge for clinicians and researchers. Multiplexed assays of variant effects (MAVEs) are important to close the gap; nonetheless, computational predictions of pathogenicity are still often the only available data for scoring variants. Such methods are not designed to provide a mechanistic explanation for the effect of amino acid substitutions. To this purpose, we propose structure-based frameworks as ensemble methodologies, with each method tailored to predict a different aspect among those exerted by amino acid substitutions to link predicted pathogenicity to mechanistic indicators. We review available frameworks, as well as advancements in underlying structure-based methods that predict variant effects on several protein features, such as protein stability, biomolecular interactions, allostery, post-translational modifications, and more.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"91 ","pages":"Article 102994"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000120","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Missense variants can affect the severity of disease, choice of treatment, and treatment outcomes. While the number of known variants has been increasing at a rapid pace, available evidence of their clinical effect has been lagging behind, constituting a challenge for clinicians and researchers. Multiplexed assays of variant effects (MAVEs) are important to close the gap; nonetheless, computational predictions of pathogenicity are still often the only available data for scoring variants. Such methods are not designed to provide a mechanistic explanation for the effect of amino acid substitutions. To this purpose, we propose structure-based frameworks as ensemble methodologies, with each method tailored to predict a different aspect among those exerted by amino acid substitutions to link predicted pathogenicity to mechanistic indicators. We review available frameworks, as well as advancements in underlying structure-based methods that predict variant effects on several protein features, such as protein stability, biomolecular interactions, allostery, post-translational modifications, and more.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation