Fine-tuning text-to-SQL models with reinforcement-learning training objectives

Xuan-Bang Nguyen , Xuan-Hieu Phan , Massimo Piccardi
{"title":"Fine-tuning text-to-SQL models with reinforcement-learning training objectives","authors":"Xuan-Bang Nguyen ,&nbsp;Xuan-Hieu Phan ,&nbsp;Massimo Piccardi","doi":"10.1016/j.nlp.2025.100135","DOIUrl":null,"url":null,"abstract":"<div><div>Text-to-SQL is an important natural language processing task that helps users automatically convert natural language queries into formal SQL code. While transformer-based models have pushed text-to-SQL to unprecedented accuracy levels in recent years, such performance is confined to models of very large size that can only be run in specialised clouds. For this reason, in this paper we explore the use of reinforcement learning to improve the performance of models of more conservative size, which can fit within standard user hardware. As reinforcement learning reward, we propose a novel function which better aligns with the text-to-SQL evaluation metrics, applied in conjunction with two strong policy gradient algorithms, REINFORCE and RELAX. Our experimental results over the popular Spider benchmark show that the proposed approach has been able to outperform a conventionally-trained T5 Small baseline by 6.6 pp (percentage points) of exact-set-match accuracy and 4.6 pp of execution accuracy, and a T5 Base baseline by 2.0 pp and 1.9 pp, respectively. The proposed model has also achieved a remarkable comparative performance against ChatGPT instances.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"10 ","pages":"Article 100135"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text-to-SQL is an important natural language processing task that helps users automatically convert natural language queries into formal SQL code. While transformer-based models have pushed text-to-SQL to unprecedented accuracy levels in recent years, such performance is confined to models of very large size that can only be run in specialised clouds. For this reason, in this paper we explore the use of reinforcement learning to improve the performance of models of more conservative size, which can fit within standard user hardware. As reinforcement learning reward, we propose a novel function which better aligns with the text-to-SQL evaluation metrics, applied in conjunction with two strong policy gradient algorithms, REINFORCE and RELAX. Our experimental results over the popular Spider benchmark show that the proposed approach has been able to outperform a conventionally-trained T5 Small baseline by 6.6 pp (percentage points) of exact-set-match accuracy and 4.6 pp of execution accuracy, and a T5 Base baseline by 2.0 pp and 1.9 pp, respectively. The proposed model has also achieved a remarkable comparative performance against ChatGPT instances.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信