Multi-objective synthesis planning by means of Monte Carlo Tree search

Helen Lai , Christos Kannas , Alan Kai Hassen , Emma Granqvist , Annie M. Westerlund , Djork-Arné Clevert , Mike Preuss , Samuel Genheden
{"title":"Multi-objective synthesis planning by means of Monte Carlo Tree search","authors":"Helen Lai ,&nbsp;Christos Kannas ,&nbsp;Alan Kai Hassen ,&nbsp;Emma Granqvist ,&nbsp;Annie M. Westerlund ,&nbsp;Djork-Arné Clevert ,&nbsp;Mike Preuss ,&nbsp;Samuel Genheden","doi":"10.1016/j.ailsci.2025.100130","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a multi-objective search algorithm for retrosynthesis planning, based on a Monte Carlo Tree search formalism. The multi-objective search allows for combining diverse set of objectives without considering their scale or weighting factors. To benchmark this novel algorithm, we employ four objectives in a total of eight retrosynthesis experiments on a PaRoutes benchmark set. The objectives range from simple ones based on starting material and step count to complex ones based on synthesis complexity and route similarity. We show that with the careful employment of complex objectives, the multi-objective algorithm can outperform the single-objective search and provides a more diverse set of solutions. However, for many target compounds, the single- and multi-objective settings are equivalent. Nevertheless, our algorithm provides a framework for incorporating novel objectives for specific applications in synthesis planning.</div></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"7 ","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318525000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a multi-objective search algorithm for retrosynthesis planning, based on a Monte Carlo Tree search formalism. The multi-objective search allows for combining diverse set of objectives without considering their scale or weighting factors. To benchmark this novel algorithm, we employ four objectives in a total of eight retrosynthesis experiments on a PaRoutes benchmark set. The objectives range from simple ones based on starting material and step count to complex ones based on synthesis complexity and route similarity. We show that with the careful employment of complex objectives, the multi-objective algorithm can outperform the single-objective search and provides a more diverse set of solutions. However, for many target compounds, the single- and multi-objective settings are equivalent. Nevertheless, our algorithm provides a framework for incorporating novel objectives for specific applications in synthesis planning.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信