Effect of Astragalus polysaccharide combined with cisplatin on exhaled volatile organic compounds as biomarkers for lung cancer and its anticancer mechanism
{"title":"Effect of Astragalus polysaccharide combined with cisplatin on exhaled volatile organic compounds as biomarkers for lung cancer and its anticancer mechanism","authors":"Wenmin Shi , Huanqing Zhang , Hanxiao Tang , Weisheng Feng , Zhijuan Zhang","doi":"10.1016/j.jpba.2025.116759","DOIUrl":null,"url":null,"abstract":"<div><div>Cisplatin (DDP) is widely used to fight lung cancer, but there is a risk of immune damage. <em>Astragalus</em> polysaccharides (APS) is the main active component of <em>Astragalus membranaceus</em> Bunge. It has demonstrated anticancer properties across a range of cancer types as well as to be effective against cisplatin induced immune damage. However, its therapeutic mechanism has not been fully explored. This study aimed to explore the antitumor mechanisms of APS and elucidate the relationship between APS and volatile organic compounds (VOCs) in exhaled breath of Lewis lung cancer (LLC) mice. Gas chromatography-mass spectrometry (GC-MS) was utilized to analyze the exhaled VOCs in LLC mice. A specific group of VOCs was identified as potential biomarkers for monitoring tumor progression. Furthermore, the effects of combined treatment with APS and DDP on the concentration of exhaled VOCs in LLC mice was evaluated. Stoichiometric analysis revealed that the levels of 12 VOCs exhibited substantial recovery following APS treatment. And a high concentration of APS (400 mg/kg), when combined with DDP, exhibited enhanced antitumor efficacy. The metabolic pathways involved in the action of APS include 12 pathways. Our methodology elucidated both the effects and mechanisms of APS on lung cancer, as well as the pharmacological enhancement of cisplatin by APS. These findings facilitate real-time monitoring of lung cancer treatments and contribute to the future development of anticancer therapies.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"259 ","pages":"Article 116759"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525001001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cisplatin (DDP) is widely used to fight lung cancer, but there is a risk of immune damage. Astragalus polysaccharides (APS) is the main active component of Astragalus membranaceus Bunge. It has demonstrated anticancer properties across a range of cancer types as well as to be effective against cisplatin induced immune damage. However, its therapeutic mechanism has not been fully explored. This study aimed to explore the antitumor mechanisms of APS and elucidate the relationship between APS and volatile organic compounds (VOCs) in exhaled breath of Lewis lung cancer (LLC) mice. Gas chromatography-mass spectrometry (GC-MS) was utilized to analyze the exhaled VOCs in LLC mice. A specific group of VOCs was identified as potential biomarkers for monitoring tumor progression. Furthermore, the effects of combined treatment with APS and DDP on the concentration of exhaled VOCs in LLC mice was evaluated. Stoichiometric analysis revealed that the levels of 12 VOCs exhibited substantial recovery following APS treatment. And a high concentration of APS (400 mg/kg), when combined with DDP, exhibited enhanced antitumor efficacy. The metabolic pathways involved in the action of APS include 12 pathways. Our methodology elucidated both the effects and mechanisms of APS on lung cancer, as well as the pharmacological enhancement of cisplatin by APS. These findings facilitate real-time monitoring of lung cancer treatments and contribute to the future development of anticancer therapies.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.