“Foundation models for research: A matter of trust?”

Koen Bruynseels , Lotte Asveld , Jeroen van den Hoven
{"title":"“Foundation models for research: A matter of trust?”","authors":"Koen Bruynseels ,&nbsp;Lotte Asveld ,&nbsp;Jeroen van den Hoven","doi":"10.1016/j.ailsci.2025.100126","DOIUrl":null,"url":null,"abstract":"<div><div>Science would not be possible without trust among experts, trust of the public in experts, and reliance on scientific instruments and methods. The rapid adoption of scientific foundation models and their use in AI agents is changing scientific practices and thereby impacting this epistemic fabric which hinges on trust and reliance. Foundation models are machine learning models that are trained on large bodies of data and can be applied to a multitude of tasks. Their application in science raises the question of whether scientific foundation models can be relied upon as a research tool and to what extent, or even be trusted as if they were research partners.</div><div>Conceptual clarification of the notions of trust and reliance in science is pivotal in the face of foundation models. Trust and reliance form the glue for the increasingly distributed epistemic labour within contemporary technoscientific systems. We build on two concepts of trust in science, namely trust in science as shared values, and trust in science based on commitments to processes that provide objective claims. We analyse whether scientific foundation models are research tools to which the concept of reliance applies, or research partners that can be trustworthy or not. We consider these foundation models within their socio-technical contexts.</div><div>Allocation of trust should be reserved for human agents and the organizations they operate in. Reliance applies to foundation models and artificial intelligence agents. This distinction is important to unambiguously allocate responsibility, which is crucial in maintaining the fabric of trust that underpins science.</div></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"7 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318525000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Science would not be possible without trust among experts, trust of the public in experts, and reliance on scientific instruments and methods. The rapid adoption of scientific foundation models and their use in AI agents is changing scientific practices and thereby impacting this epistemic fabric which hinges on trust and reliance. Foundation models are machine learning models that are trained on large bodies of data and can be applied to a multitude of tasks. Their application in science raises the question of whether scientific foundation models can be relied upon as a research tool and to what extent, or even be trusted as if they were research partners.
Conceptual clarification of the notions of trust and reliance in science is pivotal in the face of foundation models. Trust and reliance form the glue for the increasingly distributed epistemic labour within contemporary technoscientific systems. We build on two concepts of trust in science, namely trust in science as shared values, and trust in science based on commitments to processes that provide objective claims. We analyse whether scientific foundation models are research tools to which the concept of reliance applies, or research partners that can be trustworthy or not. We consider these foundation models within their socio-technical contexts.
Allocation of trust should be reserved for human agents and the organizations they operate in. Reliance applies to foundation models and artificial intelligence agents. This distinction is important to unambiguously allocate responsibility, which is crucial in maintaining the fabric of trust that underpins science.
“研究的基础模型:信任问题?”
没有专家之间的信任、公众对专家的信任以及对科学仪器和方法的依赖,科学就不可能实现。科学基础模型的迅速采用及其在人工智能代理中的应用正在改变科学实践,从而影响这种依赖于信任和依赖的认知结构。基础模型是在大量数据上训练的机器学习模型,可以应用于多种任务。它们在科学中的应用提出了一个问题,即科学基础模型是否可以作为一种研究工具来依赖,以及在多大程度上可以信任,甚至可以像信任研究伙伴一样信任它们。面对基础模型,科学中信任和依赖概念的概念澄清是至关重要的。信任和依赖形成了当代技术科学系统中日益分散的知识劳动的粘合剂。我们建立在对科学信任的两个概念之上,即对作为共同价值观的科学的信任,以及基于对提供客观主张的过程的承诺的科学信任。我们分析科学基础模型是适用于依赖概念的研究工具,还是值得信赖的研究伙伴。我们在其社会技术背景下考虑这些基础模型。信任的分配应该保留给人类代理人和他们所处的组织。Reliance适用于基础模型和人工智能代理。这种区别对于明确分配责任非常重要,这对于维持支撑科学的信任结构至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信