Solid-liquid equilibrium of abscisic acid in twelve pure solvents: Experiments, modeling, and molecular simulation

IF 2.2 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Ting Qin , Jiawei Zhao , Xiongtao Ji , Jinyue Yang , Na Wang , Baohong Hou , Ting Wang , Hongxun Hao
{"title":"Solid-liquid equilibrium of abscisic acid in twelve pure solvents: Experiments, modeling, and molecular simulation","authors":"Ting Qin ,&nbsp;Jiawei Zhao ,&nbsp;Xiongtao Ji ,&nbsp;Jinyue Yang ,&nbsp;Na Wang ,&nbsp;Baohong Hou ,&nbsp;Ting Wang ,&nbsp;Hongxun Hao","doi":"10.1016/j.jct.2025.107472","DOIUrl":null,"url":null,"abstract":"<div><div>Abscisic acid (ABA) is one of the five natural growth regulators for plants and crystallization technology is used in the manufacturing of it. The thermodynamic behavior of it plays an important role in the development and design of crystallization processes. In this study, the solubility of ABA in twelve pure solvents was gravimetrically investigated over the temperature range of 278.15 K to 313.15 K. It was found that the solubility of ABA increased steadily with the rise of temperature. Four thermodynamic models (the modified Apelblat equation, <em>van't Hoff</em> equation, <em>λh</em> model and NRTL model) were applied to correlate the experimental solubility data, and the modified Apelblat equation model showed better fitting performance. The mixed thermodynamic properties of ABA in various pure solvents were also calculated, indicating that the mixed process is spontaneous and entropy-driven. Furthermore, to further explore the solid–liquid equilibrium behavior, Hirshfeld surface of ABA crystal was calculated and molecular dynamics simulations of different systems were performed. Based on equilibrium configurations of different systems, solute–solvent interaction energy was calculated, providing a reasonable explanation for the solubility of ABA. Meanwhile, the radial distribution function (RDF) plots were also employed to analyze the hydrogen bonding interactions between ABA molecules and solvent molecules.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"206 ","pages":"Article 107472"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000266","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abscisic acid (ABA) is one of the five natural growth regulators for plants and crystallization technology is used in the manufacturing of it. The thermodynamic behavior of it plays an important role in the development and design of crystallization processes. In this study, the solubility of ABA in twelve pure solvents was gravimetrically investigated over the temperature range of 278.15 K to 313.15 K. It was found that the solubility of ABA increased steadily with the rise of temperature. Four thermodynamic models (the modified Apelblat equation, van't Hoff equation, λh model and NRTL model) were applied to correlate the experimental solubility data, and the modified Apelblat equation model showed better fitting performance. The mixed thermodynamic properties of ABA in various pure solvents were also calculated, indicating that the mixed process is spontaneous and entropy-driven. Furthermore, to further explore the solid–liquid equilibrium behavior, Hirshfeld surface of ABA crystal was calculated and molecular dynamics simulations of different systems were performed. Based on equilibrium configurations of different systems, solute–solvent interaction energy was calculated, providing a reasonable explanation for the solubility of ABA. Meanwhile, the radial distribution function (RDF) plots were also employed to analyze the hydrogen bonding interactions between ABA molecules and solvent molecules.

Abstract Image

十二种纯溶剂中脱落酸的固液平衡:实验、建模和分子模拟
脱落酸(ABA)是植物五种天然生长调节剂之一,其制备采用结晶技术。它的热力学行为在结晶过程的开发和设计中起着重要的作用。在278.15 ~ 313.15 K的温度范围内,用重量法研究了ABA在12种纯溶剂中的溶解度。结果表明,随着温度的升高,ABA的溶解度逐渐增大。采用4种热力学模型(修正Apelblat方程、van't Hoff方程、λh模型和NRTL模型)对实验溶解度数据进行关联,修正Apelblat方程模型拟合效果较好。计算了ABA在各种纯溶剂中的混合热力学性质,表明混合过程是自发的、熵驱动的。此外,为了进一步探索ABA晶体的固液平衡行为,计算了ABA晶体的Hirshfeld表面,并进行了不同体系的分子动力学模拟。根据不同体系的平衡构型,计算了溶质-溶剂相互作用能,为ABA的溶解度提供了合理的解释。同时,利用径向分布函数(RDF)图分析了ABA分子与溶剂分子之间的氢键相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Thermodynamics
Journal of Chemical Thermodynamics 工程技术-热力学
CiteScore
5.60
自引率
15.40%
发文量
199
审稿时长
79 days
期刊介绍: The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published. The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed. Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered. The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review. Contributions of a routine nature or reporting on uncharacterised materials are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信