Manufacturing and Defect Characterization of Rotationally Molded Hybrid Composite Drive Shafts

Patrick Schaible , Daniel Büchner , Sebastian Schabel , Jürgen Fleischer
{"title":"Manufacturing and Defect Characterization of Rotationally Molded Hybrid Composite Drive Shafts","authors":"Patrick Schaible ,&nbsp;Daniel Büchner ,&nbsp;Sebastian Schabel ,&nbsp;Jürgen Fleischer","doi":"10.1016/j.procir.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>One way of reducing greenhouse gas emissions is the consistent use of lightweight design. By reducing the moving mass, energy requirements can be lowered. Fibre-reinforced plastic composites are particularly suitable for lightweight components with very high mechanical requirements and a long service life. This article presents the production and investigation the influence of manufacturing process parameters on the defects of rotationally moulded parts using the example of a drive shaft. The hybrid components are manufactured using a rotational moulding process in which braided preforms and load introduction elements are processed in a single step. The elements are intimately bonded by a thermosetting matrix under the influence of temperature and centrifugal force. Different process parameters such as rotational speed, matrix temperature, mould temperature and mould unbalance are varied and the influence on the component properties are investigated. Furthermore, a catalogue of characteristics for the classification of manufacturing defects is created. It can be shown that different types of defects occur along the process chain and suitable measurements to minimize the defects are proposed.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"131 ","pages":"Pages 1-6"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125000393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One way of reducing greenhouse gas emissions is the consistent use of lightweight design. By reducing the moving mass, energy requirements can be lowered. Fibre-reinforced plastic composites are particularly suitable for lightweight components with very high mechanical requirements and a long service life. This article presents the production and investigation the influence of manufacturing process parameters on the defects of rotationally moulded parts using the example of a drive shaft. The hybrid components are manufactured using a rotational moulding process in which braided preforms and load introduction elements are processed in a single step. The elements are intimately bonded by a thermosetting matrix under the influence of temperature and centrifugal force. Different process parameters such as rotational speed, matrix temperature, mould temperature and mould unbalance are varied and the influence on the component properties are investigated. Furthermore, a catalogue of characteristics for the classification of manufacturing defects is created. It can be shown that different types of defects occur along the process chain and suitable measurements to minimize the defects are proposed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信