Carlo C. Lazado , Thinh Hoang Nhan , Vibeke Voldvik , Erik Burgerhout , Arvind Y.M. Sundaram , Torstein Tengs , Tone-Kari K. Østbye , Øivind Andersen
{"title":"Molecular regulation of cardiomyocyte functions by exogenous hydrogen sulphide in Atlantic salmon (Salmo salar)","authors":"Carlo C. Lazado , Thinh Hoang Nhan , Vibeke Voldvik , Erik Burgerhout , Arvind Y.M. Sundaram , Torstein Tengs , Tone-Kari K. Østbye , Øivind Andersen","doi":"10.1016/j.ygeno.2025.111017","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen sulphide (H<sub>2</sub>S) is known to regulate various physiological processes, but its role in fish cardiac function, especially at the molecular level, is poorly understood. This study examined the molecular functions of exogenous H<sub>2</sub>S, using sodium hydrosulphide (NaHS) as a donor, on Atlantic salmon cardiomyocytes. NaHS concentrations of 10 to 160 μM showed limited cytotoxicity and no impact on cell proliferation, though higher doses increased ATP activity. Menadione and NaHS administered separately or sequentially differentially regulated the expression of antioxidant response and sulphide detoxification genes. Transcriptomic analysis over 24, 48, 72, and 120 h revealed differential gene expression related to metabolic recovery. Enriched Gene Ontology terms at 24 h included processes like cell signalling and lipid metabolism, shifting to lipid metabolism and ribosomal processes by 48 h. By 120 h, xenobiotic metabolism and RNA synthesis were prominent. The study highlights NaHS-induced metabolic adjustments, particularly in lipid metabolism, in Atlantic salmon cardiomyocytes.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"117 2","pages":"Article 111017"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754325000333","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulphide (H2S) is known to regulate various physiological processes, but its role in fish cardiac function, especially at the molecular level, is poorly understood. This study examined the molecular functions of exogenous H2S, using sodium hydrosulphide (NaHS) as a donor, on Atlantic salmon cardiomyocytes. NaHS concentrations of 10 to 160 μM showed limited cytotoxicity and no impact on cell proliferation, though higher doses increased ATP activity. Menadione and NaHS administered separately or sequentially differentially regulated the expression of antioxidant response and sulphide detoxification genes. Transcriptomic analysis over 24, 48, 72, and 120 h revealed differential gene expression related to metabolic recovery. Enriched Gene Ontology terms at 24 h included processes like cell signalling and lipid metabolism, shifting to lipid metabolism and ribosomal processes by 48 h. By 120 h, xenobiotic metabolism and RNA synthesis were prominent. The study highlights NaHS-induced metabolic adjustments, particularly in lipid metabolism, in Atlantic salmon cardiomyocytes.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.