Advanced allowance planning of CFRP composites exploiting the pattern of chopped carbon fibre reinforcement clusters

Norbert Geier , Gergely Magyar
{"title":"Advanced allowance planning of CFRP composites exploiting the pattern of chopped carbon fibre reinforcement clusters","authors":"Norbert Geier ,&nbsp;Gergely Magyar","doi":"10.1016/j.procir.2024.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional allowance planning of carbon fibre-reinforced polymer composite plates that must be mechanically machined is based on mainly the analysis of the precision of composite manufacturing technologies. This approach neglects the impact of randomly oriented and positioned chopped fibre reinforcement clusters leading to unpredictable fibre cutting angles and inconsistent quality during machining. To address this issue, we developed an innovative allowance planning method for polymer composites reinforced with chopped fibres. Our approach optimizes the size of the non-uniform allowance to minimize machining-induced burrs on the machined edges by detecting fibre reinforcement clusters on the composite surface through digital image processing and employing a convolution-based optimization of geometric feature patterns. Validation through drilling experiments demonstrated that our method improved the average burr factor by 50% compared to a conventional allowance planning technique. Although the proposed method is recommended to be improved to manage the effects of three-dimensional fibre clusters on burr occurrence, it encourages a novel direction in allowance planning of composites having non-defined directional reinforcements.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"131 ","pages":"Pages 130-135"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221282712500054X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional allowance planning of carbon fibre-reinforced polymer composite plates that must be mechanically machined is based on mainly the analysis of the precision of composite manufacturing technologies. This approach neglects the impact of randomly oriented and positioned chopped fibre reinforcement clusters leading to unpredictable fibre cutting angles and inconsistent quality during machining. To address this issue, we developed an innovative allowance planning method for polymer composites reinforced with chopped fibres. Our approach optimizes the size of the non-uniform allowance to minimize machining-induced burrs on the machined edges by detecting fibre reinforcement clusters on the composite surface through digital image processing and employing a convolution-based optimization of geometric feature patterns. Validation through drilling experiments demonstrated that our method improved the average burr factor by 50% compared to a conventional allowance planning technique. Although the proposed method is recommended to be improved to manage the effects of three-dimensional fibre clusters on burr occurrence, it encourages a novel direction in allowance planning of composites having non-defined directional reinforcements.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信