Critical damage modes in high-performance drilling of carbon fibre reinforced epoxy composites

Kevin Kerrigan , Vaibhav A. Phadnis , Rachid M'Saoubi , Richard J. Scaife
{"title":"Critical damage modes in high-performance drilling of carbon fibre reinforced epoxy composites","authors":"Kevin Kerrigan ,&nbsp;Vaibhav A. Phadnis ,&nbsp;Rachid M'Saoubi ,&nbsp;Richard J. Scaife","doi":"10.1016/j.procir.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>The growing number of fibre deposition methods for composite structure enables highly tailored, high-performance architectures from one design intent to another. This raises the question, “How much should damage tolerances differ for one composite part design to another?” This initiates a framework for further exploration of the boundaries of acceptability, using a quantitative approach to assess the influence of process parameters on in-service performance. The framework is illustrated through a case study of a feature machined into a composite structure, namely a hole for part assembly. Mechanical and thermal hole defects were deliberately induced during dry drilling of quasi-isotropic pre-impregnated laminates. In-process forces and temperatures in combination with post-machining microscopy, X-ray computed tomography and scanning electron microscopy revealed micro-damage leading to isolated, global defects of delamination and thermal damage types. Comparisons with healthy, undamaged holes in static mechanical tests enabled quantitative assessment of the impact of different damage types on in-service performance, in this case compressive strength, of a composite part. High-speed drilling (52% faster) reduced strength (3.5%) due to hole geometry errors. Low-speed drilling (11.5x slower) increased strength (2%). Delamination (40% faster) reduced strength (2.5%). Future research should focus on defect implications, virtual defects and testing thereof, and in-situ monitoring.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"131 ","pages":"Pages 100-106"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125000605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing number of fibre deposition methods for composite structure enables highly tailored, high-performance architectures from one design intent to another. This raises the question, “How much should damage tolerances differ for one composite part design to another?” This initiates a framework for further exploration of the boundaries of acceptability, using a quantitative approach to assess the influence of process parameters on in-service performance. The framework is illustrated through a case study of a feature machined into a composite structure, namely a hole for part assembly. Mechanical and thermal hole defects were deliberately induced during dry drilling of quasi-isotropic pre-impregnated laminates. In-process forces and temperatures in combination with post-machining microscopy, X-ray computed tomography and scanning electron microscopy revealed micro-damage leading to isolated, global defects of delamination and thermal damage types. Comparisons with healthy, undamaged holes in static mechanical tests enabled quantitative assessment of the impact of different damage types on in-service performance, in this case compressive strength, of a composite part. High-speed drilling (52% faster) reduced strength (3.5%) due to hole geometry errors. Low-speed drilling (11.5x slower) increased strength (2%). Delamination (40% faster) reduced strength (2.5%). Future research should focus on defect implications, virtual defects and testing thereof, and in-situ monitoring.
碳纤维增强环氧复合材料高性能钻孔的临界损伤模式
复合材料结构的纤维沉积方法越来越多,使得从一个设计意图到另一个设计意图的高度定制,高性能架构成为可能。这就提出了一个问题:“一种复合材料部件设计与另一种复合材料部件设计的损伤容限应该有多大差异?”这开启了一个进一步探索可接受性边界的框架,使用定量方法评估过程参数对在用性能的影响。该框架通过加工成复合结构的特征的案例研究来说明,即用于零件装配的孔。在准各向同性预浸渍层压板干钻过程中,故意诱发了机械和热孔缺陷。加工过程中的力和温度结合加工后显微镜、x射线计算机断层扫描和扫描电子显微镜显示了导致分离的、整体的分层缺陷和热损伤类型的微损伤。与静态力学测试中健康、未损坏的孔进行比较,可以定量评估不同损伤类型对复合材料部件的使用性能(在本例中为抗压强度)的影响。由于孔几何误差,高速钻井(速度快52%)降低了强度(3.5%)。低速钻孔(慢11.5倍)增加强度(2%)。分层(快40%)强度降低(2.5%)。未来的研究应该集中在缺陷暗示、虚拟缺陷及其测试和现场监测上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信