M.S. Hasan , Ola A. Abu Ali , Dalia I. Saleh , M. Awais , Munawar Iqbal , Muzammal Aslam , Muhammad Imran Irfan
{"title":"Enhanced the efficiency and current density by structural modifications and conduction band shifting in lead-based mixed halide perovskite solar cells","authors":"M.S. Hasan , Ola A. Abu Ali , Dalia I. Saleh , M. Awais , Munawar Iqbal , Muzammal Aslam , Muhammad Imran Irfan","doi":"10.1016/j.ssc.2025.115885","DOIUrl":null,"url":null,"abstract":"<div><div>The pure and Mn-doped CsPbIBr<sub>2</sub> perovskite films are synthesized by sol-gel spin coating. X-ray diffraction (<em>XRD</em>) of pure and Mn-doped films shows the pure cubic perovskite phase in both samples, with Mn-doped samples having higher crystallinity and bigger crystal sizes (21.7–35.9 nm). Mn-doping induces lattice modifications, influencing the material's structural homogeneity and optoelectronic properties. UV–Vis spectroscopy elucidates the energy band gaps, showcasing a reduced bandgap (2.141–2.079 eV) in Mn-doped CsPbIBr<sub>2</sub>. The J-V measurement of the device with configuration FTO\\TiO<sub>2</sub>\\Mn-CsPbIBr<sub>2</sub>\\HTL\\Au shows an efficiency of 10.42 %. To further improve the device performance, we use Mn-WO<sub>3</sub> ETL with TiO<sub>2</sub>. XRD and Raman spectroscopic characterization declared a significant crystallinity of the 4 % Mn-WO<sub>3</sub> electron transport layer in monoclinic phase. The UV–vis spectroscopy analysis of Mn-WO3 fabricated which has wider bandgap promote charge carrier mobility and stability, whereas, low refractive index and dielectric constants decrease light reflection and absorption losses, thus solar cells efficiency improved. The current-density voltage (J-V) measurement of the final device with configuration FTO\\TiO<sub>2</sub>\\Mn-WO<sub>3</sub>\\Mn-CsPbIBr<sub>2</sub>\\HTL\\Au shows the efficiency of 12.75 % owing to better charge carrier extraction and decreased recombination losses. This in-depth review elucidates the origins of losses in perovskite solar cells and highlights the scope of improving efficiency by engineering materials and devices.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"399 ","pages":"Article 115885"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825000602","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The pure and Mn-doped CsPbIBr2 perovskite films are synthesized by sol-gel spin coating. X-ray diffraction (XRD) of pure and Mn-doped films shows the pure cubic perovskite phase in both samples, with Mn-doped samples having higher crystallinity and bigger crystal sizes (21.7–35.9 nm). Mn-doping induces lattice modifications, influencing the material's structural homogeneity and optoelectronic properties. UV–Vis spectroscopy elucidates the energy band gaps, showcasing a reduced bandgap (2.141–2.079 eV) in Mn-doped CsPbIBr2. The J-V measurement of the device with configuration FTO\TiO2\Mn-CsPbIBr2\HTL\Au shows an efficiency of 10.42 %. To further improve the device performance, we use Mn-WO3 ETL with TiO2. XRD and Raman spectroscopic characterization declared a significant crystallinity of the 4 % Mn-WO3 electron transport layer in monoclinic phase. The UV–vis spectroscopy analysis of Mn-WO3 fabricated which has wider bandgap promote charge carrier mobility and stability, whereas, low refractive index and dielectric constants decrease light reflection and absorption losses, thus solar cells efficiency improved. The current-density voltage (J-V) measurement of the final device with configuration FTO\TiO2\Mn-WO3\Mn-CsPbIBr2\HTL\Au shows the efficiency of 12.75 % owing to better charge carrier extraction and decreased recombination losses. This in-depth review elucidates the origins of losses in perovskite solar cells and highlights the scope of improving efficiency by engineering materials and devices.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.