Knowledge-enhanced spatial–temporal multi-frequency fusion transformer for plant-wide industrial process monitoring

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinyu Chen , Jianxiang Jin , Lei Zhang , Chengguang Wang , Wenjun Huang
{"title":"Knowledge-enhanced spatial–temporal multi-frequency fusion transformer for plant-wide industrial process monitoring","authors":"Jinyu Chen ,&nbsp;Jianxiang Jin ,&nbsp;Lei Zhang ,&nbsp;Chengguang Wang ,&nbsp;Wenjun Huang","doi":"10.1016/j.aei.2025.103213","DOIUrl":null,"url":null,"abstract":"<div><div>Plant-level industrial process monitoring is critical for ensuring production safety and efficiency. Existing state monitoring models predominantly focus on temporal modeling, neglecting the significance of underlying process structural knowledge and frequency domain information. To address these limitations, we propose a novel knowledge-enhanced spatial–temporal multi-frequency fusion transformer (KSTFformer) for comprehensive plant-wide process monitoring. Unlike existing data-driven methods, KSTFformer integrates prior knowledge with process data to enhance both modeling performance and interpretability. Initially, we decompose the entire process into multiple operating units based on equipment connection relationships, constructing variable correlations as a directed graph. We then design a graph convolution-based structural learning module that captures spatial–temporal dependencies using graph convolutional networks, leveraging the Gumbel-softmax sampling method to learn variable interconnections. Furthermore, a novel multi-band frequency domain feature extractor was innovatively proposed, which refines frequency domain sequences into multiple local sub-sequences and extracts frequency domain characteristics of variables through channel-independent networks. Finally, the model integrates spatial–temporal and frequency domain features through attention mechanism, enhancing anomaly detection capabilities. The proposed method’s effectiveness is validated through two real-world industrial process case studies.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103213"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625001065","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-level industrial process monitoring is critical for ensuring production safety and efficiency. Existing state monitoring models predominantly focus on temporal modeling, neglecting the significance of underlying process structural knowledge and frequency domain information. To address these limitations, we propose a novel knowledge-enhanced spatial–temporal multi-frequency fusion transformer (KSTFformer) for comprehensive plant-wide process monitoring. Unlike existing data-driven methods, KSTFformer integrates prior knowledge with process data to enhance both modeling performance and interpretability. Initially, we decompose the entire process into multiple operating units based on equipment connection relationships, constructing variable correlations as a directed graph. We then design a graph convolution-based structural learning module that captures spatial–temporal dependencies using graph convolutional networks, leveraging the Gumbel-softmax sampling method to learn variable interconnections. Furthermore, a novel multi-band frequency domain feature extractor was innovatively proposed, which refines frequency domain sequences into multiple local sub-sequences and extracts frequency domain characteristics of variables through channel-independent networks. Finally, the model integrates spatial–temporal and frequency domain features through attention mechanism, enhancing anomaly detection capabilities. The proposed method’s effectiveness is validated through two real-world industrial process case studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信