Isolating the impact of tissue heterogeneities in high dose rate brachytherapy treatment of the breast

IF 3.4 Q2 ONCOLOGY
Jules Faucher , Vincent Turgeon , Boris Bahoric , Shirin A. Enger , Peter G.F. Watson
{"title":"Isolating the impact of tissue heterogeneities in high dose rate brachytherapy treatment of the breast","authors":"Jules Faucher ,&nbsp;Vincent Turgeon ,&nbsp;Boris Bahoric ,&nbsp;Shirin A. Enger ,&nbsp;Peter G.F. Watson","doi":"10.1016/j.phro.2025.100737","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Clinical brachytherapy treatment planning is performed assuming the patient is composed entirely of water and infinite in size. In this work, the effects of this assumption on calculated dose were investigated by comparing dose to water in water (D<sub>w,w</sub>) in an unbound phantom mimicking TG-43 conditions, and dose to medium in medium (D<sub>m,m</sub>) for breast cancer patients treated with high dose rate brachytherapy.</div></div><div><h3>Materials and methods</h3><div>Treatment plans for 123 breast cancer patients were recalculated with a Monte Carlo-based treatment planning software. The dwell times and dwell positions were imported from the clinical treatment planning system. The dose was computed and reported as D<sub>w,w</sub> and D<sub>m,m</sub>. Dose-volume histogram (DVH) metrics were evaluated for target volumes and organs at risk.</div></div><div><h3>Results</h3><div>D<sub>w,w</sub> overestimated the dose for most studied DVH metrics. The largest median overestimations between D<sub>m,m</sub> and D<sub>w,w</sub> were seen for the planning target volume (PTV) V<sub>200%</sub> (5.8%), lung D<sub>0.1 cm</sub><sup>3</sup> (6.0%) and skin D<sub>0.1 cm</sub><sup>3</sup> (4.2%). The differences between D<sub>m,m</sub> and D<sub>w,w</sub> were statistically significant for all investigated DVH metrics<sub>.</sub> The PTV V<sub>90%</sub> had the smallest deviation (0.7%).</div></div><div><h3>Conclusion</h3><div>There was a significant difference in the DVH metrics studied when tissue heterogeneities and patient-specific scattering are accounted for in high dose rate breast brachytherapy. However, for the studied patient cohort, the clinical coverage goal (PTV V<sub>90%</sub>), had the smallest deviation.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100737"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Clinical brachytherapy treatment planning is performed assuming the patient is composed entirely of water and infinite in size. In this work, the effects of this assumption on calculated dose were investigated by comparing dose to water in water (Dw,w) in an unbound phantom mimicking TG-43 conditions, and dose to medium in medium (Dm,m) for breast cancer patients treated with high dose rate brachytherapy.

Materials and methods

Treatment plans for 123 breast cancer patients were recalculated with a Monte Carlo-based treatment planning software. The dwell times and dwell positions were imported from the clinical treatment planning system. The dose was computed and reported as Dw,w and Dm,m. Dose-volume histogram (DVH) metrics were evaluated for target volumes and organs at risk.

Results

Dw,w overestimated the dose for most studied DVH metrics. The largest median overestimations between Dm,m and Dw,w were seen for the planning target volume (PTV) V200% (5.8%), lung D0.1 cm3 (6.0%) and skin D0.1 cm3 (4.2%). The differences between Dm,m and Dw,w were statistically significant for all investigated DVH metrics. The PTV V90% had the smallest deviation (0.7%).

Conclusion

There was a significant difference in the DVH metrics studied when tissue heterogeneities and patient-specific scattering are accounted for in high dose rate breast brachytherapy. However, for the studied patient cohort, the clinical coverage goal (PTV V90%), had the smallest deviation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信