Enhanced single-diode model for improved accuracy in photovoltaic cell characterization

Ismail Abazine, Mustapha Elyaqouti, El Hanafi Arjdal, Driss Saadaoui, Dris Ben Hmamou, Abdelfattah Elhammoudy, Souad Lidaighbi, Imade Choulli
{"title":"Enhanced single-diode model for improved accuracy in photovoltaic cell characterization","authors":"Ismail Abazine,&nbsp;Mustapha Elyaqouti,&nbsp;El Hanafi Arjdal,&nbsp;Driss Saadaoui,&nbsp;Dris Ben Hmamou,&nbsp;Abdelfattah Elhammoudy,&nbsp;Souad Lidaighbi,&nbsp;Imade Choulli","doi":"10.1016/j.prime.2025.100935","DOIUrl":null,"url":null,"abstract":"<div><div>The single-diode model (SDM) is widely used to simulate the behavior of photovoltaic (PV) cells. In the conventional approach, these models, referred to as voltage-independent SDM (SDMvi), assume that their parameters remain constant regardless of the PV cell's operating voltage. While SDMvi models are fundamental for PV system analysis and design, this assumption may limit prediction accuracy, particularly when dealing with nonlinear and dynamic PV characteristics. This paper introduces an enhanced single-diode model (SDMvd) that accounts for the voltage dependence of its five parameters. To achieve this, two new variables, P1 and P2, are introduced to segment the I-V curve into three regions, each containing the three characteristic points: maximum power point (MPP), open-circuit voltage (Voc), and short-circuit current (Isc). A novel hybrid method, combining analytical and numerical approaches, is then proposed for parameter extraction in each segment. The effectiveness of the proposed model is evaluated using five PV cells/modules from different technologies and under various environmental conditions. The results demonstrate that the SDMvd significantly improves accuracy, achieving a Root Mean Square Error (RMSE) of 6.161168E-04 A for the PVM 752 GaAs and 1.15378E-03 A for the STM6–40/36 module.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"11 ","pages":"Article 100935"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671125000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The single-diode model (SDM) is widely used to simulate the behavior of photovoltaic (PV) cells. In the conventional approach, these models, referred to as voltage-independent SDM (SDMvi), assume that their parameters remain constant regardless of the PV cell's operating voltage. While SDMvi models are fundamental for PV system analysis and design, this assumption may limit prediction accuracy, particularly when dealing with nonlinear and dynamic PV characteristics. This paper introduces an enhanced single-diode model (SDMvd) that accounts for the voltage dependence of its five parameters. To achieve this, two new variables, P1 and P2, are introduced to segment the I-V curve into three regions, each containing the three characteristic points: maximum power point (MPP), open-circuit voltage (Voc), and short-circuit current (Isc). A novel hybrid method, combining analytical and numerical approaches, is then proposed for parameter extraction in each segment. The effectiveness of the proposed model is evaluated using five PV cells/modules from different technologies and under various environmental conditions. The results demonstrate that the SDMvd significantly improves accuracy, achieving a Root Mean Square Error (RMSE) of 6.161168E-04 A for the PVM 752 GaAs and 1.15378E-03 A for the STM6–40/36 module.
增强单二极管模型,提高光伏电池表征的准确性
单二极管模型(SDM)被广泛用于模拟光伏(PV)电池的行为。在传统方法中,这些模型被称为电压无关SDM (SDMvi),假设它们的参数与光伏电池的工作电压无关。虽然SDMvi模型是光伏系统分析和设计的基础,但这种假设可能会限制预测的准确性,特别是在处理非线性和动态光伏特性时。本文介绍了一种考虑其五个参数的电压依赖性的增强型单二极管模型(SDMvd)。为了实现这一点,引入了两个新的变量P1和P2,将I-V曲线分割为三个区域,每个区域包含三个特征点:最大功率点(MPP)、开路电压(Voc)和短路电流(Isc)。在此基础上,提出了一种将解析法与数值法相结合的混合方法,用于各段的参数提取。在不同的环境条件下,使用来自不同技术的五个光伏电池/模块来评估所提出模型的有效性。结果表明,SDMvd显著提高了精度,PVM 752 GaAs的均方根误差(RMSE)为6.161168E-04 a, STM6-40/36模块的均方根误差(RMSE)为1.15378E-03 a。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信