{"title":"Ledoit-Wolf linear shrinkage with unknown mean","authors":"Benoît Oriol , Alexandre Miot","doi":"10.1016/j.jmva.2025.105429","DOIUrl":null,"url":null,"abstract":"<div><div>This work addresses large dimensional covariance matrix estimation with unknown mean. The empirical covariance estimator fails when dimension and number of samples are proportional and tend to infinity, settings known as Kolmogorov asymptotics. When the mean is known, Ledoit and Wolf (2004) proposed a linear shrinkage estimator and proved its convergence under those asymptotics. To the best of our knowledge, no formal proof has been proposed when the mean is unknown. To address this issue, we propose to extend the linear shrinkage and its convergence properties to translation-invariant estimators. We expose four estimators respecting those conditions, proving their properties. Finally, we show empirically that a new estimator we propose outperforms other standard estimators.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105429"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000247","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This work addresses large dimensional covariance matrix estimation with unknown mean. The empirical covariance estimator fails when dimension and number of samples are proportional and tend to infinity, settings known as Kolmogorov asymptotics. When the mean is known, Ledoit and Wolf (2004) proposed a linear shrinkage estimator and proved its convergence under those asymptotics. To the best of our knowledge, no formal proof has been proposed when the mean is unknown. To address this issue, we propose to extend the linear shrinkage and its convergence properties to translation-invariant estimators. We expose four estimators respecting those conditions, proving their properties. Finally, we show empirically that a new estimator we propose outperforms other standard estimators.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.