Ledoit-Wolf linear shrinkage with unknown mean

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Benoît Oriol , Alexandre Miot
{"title":"Ledoit-Wolf linear shrinkage with unknown mean","authors":"Benoît Oriol ,&nbsp;Alexandre Miot","doi":"10.1016/j.jmva.2025.105429","DOIUrl":null,"url":null,"abstract":"<div><div>This work addresses large dimensional covariance matrix estimation with unknown mean. The empirical covariance estimator fails when dimension and number of samples are proportional and tend to infinity, settings known as Kolmogorov asymptotics. When the mean is known, Ledoit and Wolf (2004) proposed a linear shrinkage estimator and proved its convergence under those asymptotics. To the best of our knowledge, no formal proof has been proposed when the mean is unknown. To address this issue, we propose to extend the linear shrinkage and its convergence properties to translation-invariant estimators. We expose four estimators respecting those conditions, proving their properties. Finally, we show empirically that a new estimator we propose outperforms other standard estimators.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105429"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000247","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses large dimensional covariance matrix estimation with unknown mean. The empirical covariance estimator fails when dimension and number of samples are proportional and tend to infinity, settings known as Kolmogorov asymptotics. When the mean is known, Ledoit and Wolf (2004) proposed a linear shrinkage estimator and proved its convergence under those asymptotics. To the best of our knowledge, no formal proof has been proposed when the mean is unknown. To address this issue, we propose to extend the linear shrinkage and its convergence properties to translation-invariant estimators. We expose four estimators respecting those conditions, proving their properties. Finally, we show empirically that a new estimator we propose outperforms other standard estimators.
平均未知的Ledoit-Wolf线性收缩
这项工作解决了具有未知均值的大维度协方差矩阵估计。当样本的维数和数量成正比并趋于无穷大时,经验协方差估计器失效,这种设置称为Kolmogorov渐近性。当均值已知时,Ledoit和Wolf(2004)提出了一个线性收缩估计量,并证明了它在这些渐近性下的收敛性。据我们所知,当平均值未知时,还没有正式的证明。为了解决这个问题,我们提出将线性收缩及其收敛性扩展到平移不变估计量。我们给出了四个符合这些条件的估计量,并证明了它们的性质。最后,我们通过经验证明,我们提出的一个新的估计器优于其他标准估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信