Patrick Godau , Piotr Kalinowski , Evangelia Christodoulou , Annika Reinke , Minu Tizabi , Luciana Ferrer , Paul Jäger , Lena Maier-Hein
{"title":"Navigating prevalence shifts in image analysis algorithm deployment","authors":"Patrick Godau , Piotr Kalinowski , Evangelia Christodoulou , Annika Reinke , Minu Tizabi , Luciana Ferrer , Paul Jäger , Lena Maier-Hein","doi":"10.1016/j.media.2025.103504","DOIUrl":null,"url":null,"abstract":"<div><div>Domain gaps are significant obstacles to the clinical implementation of machine learning (ML) solutions for medical image analysis. Although current research emphasizes new training methods and network architectures, the specific impact of prevalence shifts on algorithms in real-world applications is often overlooked. Differences in class frequencies between development and deployment data are crucial, particularly for the widespread adoption of artificial intelligence (AI), as disease prevalence can vary greatly across different times and locations. Our contribution is threefold. Based on a diverse set of 30 medical classification tasks (1) we demonstrate that lack of prevalence shift handling can have severe consequences on the quality of calibration, decision threshold, and performance assessment. Furthermore, (2) we show that prevalences can be accurately and reliably estimated in a data-driven manner. Finally, (3) we propose a new workflow for prevalence-aware image classification that uses estimated deployment prevalences to adjust a trained classifier to a new environment, without requiring additional annotated deployment data. Comprehensive experiments indicate that our proposed approach could contribute to generating better classifier decisions and more reliable performance estimates compared to current practice.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103504"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000520","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Domain gaps are significant obstacles to the clinical implementation of machine learning (ML) solutions for medical image analysis. Although current research emphasizes new training methods and network architectures, the specific impact of prevalence shifts on algorithms in real-world applications is often overlooked. Differences in class frequencies between development and deployment data are crucial, particularly for the widespread adoption of artificial intelligence (AI), as disease prevalence can vary greatly across different times and locations. Our contribution is threefold. Based on a diverse set of 30 medical classification tasks (1) we demonstrate that lack of prevalence shift handling can have severe consequences on the quality of calibration, decision threshold, and performance assessment. Furthermore, (2) we show that prevalences can be accurately and reliably estimated in a data-driven manner. Finally, (3) we propose a new workflow for prevalence-aware image classification that uses estimated deployment prevalences to adjust a trained classifier to a new environment, without requiring additional annotated deployment data. Comprehensive experiments indicate that our proposed approach could contribute to generating better classifier decisions and more reliable performance estimates compared to current practice.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.