Interpretable modality-specific and interactive graph convolutional network on brain functional and structural connectomes

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jing Xia, Yi Hao Chan, Deepank Girish, Jagath C. Rajapakse
{"title":"Interpretable modality-specific and interactive graph convolutional network on brain functional and structural connectomes","authors":"Jing Xia,&nbsp;Yi Hao Chan,&nbsp;Deepank Girish,&nbsp;Jagath C. Rajapakse","doi":"10.1016/j.media.2025.103509","DOIUrl":null,"url":null,"abstract":"<div><div>Both brain functional connectivity (FC) and structural connectivity (SC) provide distinct neural mechanisms for cognition and neurological disease. In addition, interactions between SC and FC within distributed association regions are related to alterations in cognition or neurological diseases, considering the inherent linkage between neural function and structure. However, there is a scarcity of existing learning-based methods that leverage both modality-specific characteristics and high-order interactions between the two modalities for regression or classification. Hence, this study proposes an interpretable modality-specific and interactive graph convolutional network (MS-Inter-GCN) that incorporates modality-specific information, reflecting the unique neural mechanism for each modality, and structure–function interactions, capturing the underlying foundation provided by white-matter fiber tracts for high-level brain function. In MS-Inter-GCN, we generate modality-specific task-relevant embeddings separately from both FC and SC using a graph convolutional encoder–decoder module. Subsequently, we learn the interactive weights between corresponding regions of FC and SC, reflecting the coupling strength, by employing an interactive module on the embeddings of both modalities. A novel graph structure is constructed, which uses modality-specific task-relevant embeddings and inserts the interactive weights as edges connecting corresponding regions of two modalities, and then is used for the regression or classification task. Finally, a post-hoc explainable technology - GNNExplainer- is used to identify salient regions and connections of each modality as well as salient interactions between FC and SC associated with tasks. We apply the proposed framework to fluid cognition prediction, Parkinson’s disease (PD), Alzheimer’s disease (AD), and schizophrenia (SZ) classification. Experimental results demonstrate that our method outperforms the other ten state-of-the-art methods on multi-modal brain features on all tasks. The GNNExplainer identifies salient structural and functional regions and connections for fluid cognition, PD, AD, and SZ. It confirms that strong structure–function coupling within the executive and control networks, combined with weak coupling within the motor network, is associated with fluid cognition. Moreover, structure–function decoupling in specific brain regions serves as a marker for different diseases: decoupling of the prefrontal, superior parietal, and superior occipital cortices is a marker of PD; decoupling of the middle frontal and lateral parietal cortices, temporal pole, and subcortical regions is indicative of AD; and decoupling of the prefrontal, parietal, and temporal cortices, as well as the cerebellum, contributes to SZ.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103509"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136184152500057X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Both brain functional connectivity (FC) and structural connectivity (SC) provide distinct neural mechanisms for cognition and neurological disease. In addition, interactions between SC and FC within distributed association regions are related to alterations in cognition or neurological diseases, considering the inherent linkage between neural function and structure. However, there is a scarcity of existing learning-based methods that leverage both modality-specific characteristics and high-order interactions between the two modalities for regression or classification. Hence, this study proposes an interpretable modality-specific and interactive graph convolutional network (MS-Inter-GCN) that incorporates modality-specific information, reflecting the unique neural mechanism for each modality, and structure–function interactions, capturing the underlying foundation provided by white-matter fiber tracts for high-level brain function. In MS-Inter-GCN, we generate modality-specific task-relevant embeddings separately from both FC and SC using a graph convolutional encoder–decoder module. Subsequently, we learn the interactive weights between corresponding regions of FC and SC, reflecting the coupling strength, by employing an interactive module on the embeddings of both modalities. A novel graph structure is constructed, which uses modality-specific task-relevant embeddings and inserts the interactive weights as edges connecting corresponding regions of two modalities, and then is used for the regression or classification task. Finally, a post-hoc explainable technology - GNNExplainer- is used to identify salient regions and connections of each modality as well as salient interactions between FC and SC associated with tasks. We apply the proposed framework to fluid cognition prediction, Parkinson’s disease (PD), Alzheimer’s disease (AD), and schizophrenia (SZ) classification. Experimental results demonstrate that our method outperforms the other ten state-of-the-art methods on multi-modal brain features on all tasks. The GNNExplainer identifies salient structural and functional regions and connections for fluid cognition, PD, AD, and SZ. It confirms that strong structure–function coupling within the executive and control networks, combined with weak coupling within the motor network, is associated with fluid cognition. Moreover, structure–function decoupling in specific brain regions serves as a marker for different diseases: decoupling of the prefrontal, superior parietal, and superior occipital cortices is a marker of PD; decoupling of the middle frontal and lateral parietal cortices, temporal pole, and subcortical regions is indicative of AD; and decoupling of the prefrontal, parietal, and temporal cortices, as well as the cerebellum, contributes to SZ.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信