Yanan Zhang , Gaowei Yan , Shuyi Xiao , Fang Wang , Guanjia Zhao , Suxia Ma
{"title":"Mechanism- and data-driven based dynamic hybrid modeling for multi-condition processes","authors":"Yanan Zhang , Gaowei Yan , Shuyi Xiao , Fang Wang , Guanjia Zhao , Suxia Ma","doi":"10.1016/j.chemolab.2025.105353","DOIUrl":null,"url":null,"abstract":"<div><div>In process industries, the complexity and variability of working conditions make it challenging to accurately measure product quality. While data-driven models have developed rapidly, they often overlook the underlying physical or chemical mechanisms. To address this, we propose a hybrid modeling approach that combines mechanism- and data-driven methods. Historical and current working condition data are processed through a hidden layer to extract features. The partial differential equation is discretized and approximated using the forward Euler method to derive mechanism-based quality variable values. These values are then combined with real data through a weighted mix to create a new label for dynamic regression. Additionally, a domain adaptation regularization term is introduced to align the distributions of different working conditions. Through analyses of three process industry datasets, we demonstrate that this method can predict unmeasurable variables with reasonable accuracy and exhibits stronger generalization ability compared to pure data-driven models.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"260 ","pages":"Article 105353"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000383","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In process industries, the complexity and variability of working conditions make it challenging to accurately measure product quality. While data-driven models have developed rapidly, they often overlook the underlying physical or chemical mechanisms. To address this, we propose a hybrid modeling approach that combines mechanism- and data-driven methods. Historical and current working condition data are processed through a hidden layer to extract features. The partial differential equation is discretized and approximated using the forward Euler method to derive mechanism-based quality variable values. These values are then combined with real data through a weighted mix to create a new label for dynamic regression. Additionally, a domain adaptation regularization term is introduced to align the distributions of different working conditions. Through analyses of three process industry datasets, we demonstrate that this method can predict unmeasurable variables with reasonable accuracy and exhibits stronger generalization ability compared to pure data-driven models.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.