Kullback-Leibler Divergence-Based Observer Design Against Sensor Bias Injection Attacks in Single-Output Systems

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Fatih Emre Tosun;André M. H. Teixeira;Jingwei Dong;Anders Ahlén;Subhrakanti Dey
{"title":"Kullback-Leibler Divergence-Based Observer Design Against Sensor Bias Injection Attacks in Single-Output Systems","authors":"Fatih Emre Tosun;André M. H. Teixeira;Jingwei Dong;Anders Ahlén;Subhrakanti Dey","doi":"10.1109/TIFS.2025.3546167","DOIUrl":null,"url":null,"abstract":"This paper considers observer-based detection of sensor bias injection attacks (BIAs) on linear cyber-physical systems with single output driven by white Gaussian noise. Despite their simplicity, BIAs pose a severe risk to systems with integrators, which we refer to as integrator vulnerability. Specifically, the residual generated by any linear observer is indistinguishable under attack and normal operation at steady state, making BIAs detectable only during transients. To address this, we propose a principled method based on Kullback-Leibler divergence to design a residual generator that significantly increases the signal-to-noise ratio against BIAs. For systems without integrator vulnerability, our method also enables a trade-off between transient and steady-state detectability. The effectiveness of the proposed method is demonstrated through numerical comparisons with three state-of-the-art residual generators.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"2763-2777"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904920/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers observer-based detection of sensor bias injection attacks (BIAs) on linear cyber-physical systems with single output driven by white Gaussian noise. Despite their simplicity, BIAs pose a severe risk to systems with integrators, which we refer to as integrator vulnerability. Specifically, the residual generated by any linear observer is indistinguishable under attack and normal operation at steady state, making BIAs detectable only during transients. To address this, we propose a principled method based on Kullback-Leibler divergence to design a residual generator that significantly increases the signal-to-noise ratio against BIAs. For systems without integrator vulnerability, our method also enables a trade-off between transient and steady-state detectability. The effectiveness of the proposed method is demonstrated through numerical comparisons with three state-of-the-art residual generators.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信