Haoyue Liu;Jinghan Xu;Shihan Peng;Yi Chang;Hanyu Zhou;Yuxing Duan;Lin Zhu;Yonghong Tian;Luxin Yan
{"title":"NER-Net+: Seeing Motion at Nighttime With an Event Camera","authors":"Haoyue Liu;Jinghan Xu;Shihan Peng;Yi Chang;Hanyu Zhou;Yuxing Duan;Lin Zhu;Yonghong Tian;Luxin Yan","doi":"10.1109/TPAMI.2025.3545936","DOIUrl":null,"url":null,"abstract":"We focus on a very challenging task: imaging at nighttime dynamic scenes. Conventional RGB cameras struggle with the trade-off between long exposure for low-light imaging and short exposure for capturing dynamic scenes. Event cameras react to dynamic changes, with their high temporal resolution (microsecond) and dynamic range (120 dB), and thus offer a promising alternative. However, existing methods are mostly based on simulated datasets due to the lack of paired event-clean image data for nighttime conditions, where the domain gap leads to performance limitations in real-world scenarios. Moreover, most existing event reconstruction methods are tailored for daytime data, overlooking issues unique to low-light events at night, such as strong noise, temporal trailing, and spatial non-uniformity, resulting in unsatisfactory reconstruction results. To address these challenges, we construct the first real paired low-light event dataset (RLED) through a co-axial imaging system, comprising 80,400 spatially and temporally aligned image GTs and low-light events, which provides a unified training and evaluation dataset for existing methods. We further conduct a comprehensive analysis of the causes and characteristics of strong noise, temporal trailing, and spatial non-uniformity in nighttime events, and propose a nighttime event reconstruction network (NER-Net+). It includes a learnable event timestamps calibration module (LETC) to correct the temporal trailing events and a non-stationary spatio-temporal information enhancement module (NSIE) to suppress sensor noise and spatial non-uniformity. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art methods in visual quality and generalization on real-world nighttime datasets.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 6","pages":"4768-4786"},"PeriodicalIF":18.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10904298/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We focus on a very challenging task: imaging at nighttime dynamic scenes. Conventional RGB cameras struggle with the trade-off between long exposure for low-light imaging and short exposure for capturing dynamic scenes. Event cameras react to dynamic changes, with their high temporal resolution (microsecond) and dynamic range (120 dB), and thus offer a promising alternative. However, existing methods are mostly based on simulated datasets due to the lack of paired event-clean image data for nighttime conditions, where the domain gap leads to performance limitations in real-world scenarios. Moreover, most existing event reconstruction methods are tailored for daytime data, overlooking issues unique to low-light events at night, such as strong noise, temporal trailing, and spatial non-uniformity, resulting in unsatisfactory reconstruction results. To address these challenges, we construct the first real paired low-light event dataset (RLED) through a co-axial imaging system, comprising 80,400 spatially and temporally aligned image GTs and low-light events, which provides a unified training and evaluation dataset for existing methods. We further conduct a comprehensive analysis of the causes and characteristics of strong noise, temporal trailing, and spatial non-uniformity in nighttime events, and propose a nighttime event reconstruction network (NER-Net+). It includes a learnable event timestamps calibration module (LETC) to correct the temporal trailing events and a non-stationary spatio-temporal information enhancement module (NSIE) to suppress sensor noise and spatial non-uniformity. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art methods in visual quality and generalization on real-world nighttime datasets.