Benjamin S. C. Wade, Ryan Pindale, James Luccarelli, Shuang Li, Robert C. Meisner, Stephen J. Seiner, Joan A. Camprodon, Michael E. Henry
{"title":"Prediction of individual treatment allocation between electroconvulsive therapy or ketamine using the Personalized Advantage Index","authors":"Benjamin S. C. Wade, Ryan Pindale, James Luccarelli, Shuang Li, Robert C. Meisner, Stephen J. Seiner, Joan A. Camprodon, Michael E. Henry","doi":"10.1038/s41746-025-01523-3","DOIUrl":null,"url":null,"abstract":"<p>Electroconvulsive therapy (ECT) and ketamine are effective treatments for depression; however, evidence-based guidelines are needed to inform individual treatment selection. We adapted the Personalized Advantage Index (PAI) using machine learning to predict optimal treatment assignment to ECT or ketamine using EHR data on 2506 ECT and 196 ketamine patients. Depressive symptoms were evaluated using the Quick Inventory of Depressive Symptomatology (QIDS) before and during acute treatment. Propensity score matching across treatments was used to address confounding by indication, yielding a sample of 392 patients (<i>n</i> = 196 per treatment). Models predicted differential minimum QIDS scores (min-QIDS) over acute treatment using pretreatment EHR measures and SHAP values identified prescriptive predictors. Patients with large PAI scores who received a predicted optimal had significantly lower min-QIDS compared to the non-optimal treatment group (mean difference = 1.19 [95% CI: 0.32, ∞], <i>t</i> = 2.25, <i>q</i> < 0.05, <i>d</i> = 0.26). Our model identified candidate pretreatment factors to provide actionable, effective antidepressant treatment selection guidelines.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"29 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01523-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Electroconvulsive therapy (ECT) and ketamine are effective treatments for depression; however, evidence-based guidelines are needed to inform individual treatment selection. We adapted the Personalized Advantage Index (PAI) using machine learning to predict optimal treatment assignment to ECT or ketamine using EHR data on 2506 ECT and 196 ketamine patients. Depressive symptoms were evaluated using the Quick Inventory of Depressive Symptomatology (QIDS) before and during acute treatment. Propensity score matching across treatments was used to address confounding by indication, yielding a sample of 392 patients (n = 196 per treatment). Models predicted differential minimum QIDS scores (min-QIDS) over acute treatment using pretreatment EHR measures and SHAP values identified prescriptive predictors. Patients with large PAI scores who received a predicted optimal had significantly lower min-QIDS compared to the non-optimal treatment group (mean difference = 1.19 [95% CI: 0.32, ∞], t = 2.25, q < 0.05, d = 0.26). Our model identified candidate pretreatment factors to provide actionable, effective antidepressant treatment selection guidelines.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.