Existence of at least k solutions to a fractional p-Kirchhoff problem involving singularity and critical exponent

IF 2.5 2区 数学 Q1 MATHEMATICS
Sekhar Ghosh, Debajyoti Choudhuri, Alessio Fiscella
{"title":"Existence of at least k solutions to a fractional p-Kirchhoff problem involving singularity and critical exponent","authors":"Sekhar Ghosh, Debajyoti Choudhuri, Alessio Fiscella","doi":"10.1007/s13540-025-00382-9","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of nonnegative solutions to the following nonlocal elliptic problem involving singularity </p><span>$$\\begin{aligned} \\mathfrak {M}\\left( \\int _{Q}\\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\\right) (-\\Delta )_{p}^{s} u&amp;=\\frac{\\lambda }{u^{\\gamma }}+u^{p_s^*-1}~\\text {in}~\\Omega ,\\\\ u&amp;&gt;0~\\text {in}~\\Omega ,\\\\ u&amp;=0~\\text {in}~\\mathbb {R}^N\\setminus \\Omega , \\end{aligned}$$</span><p>where <span>\\(\\mathfrak {M}\\)</span> is the Kirchhoff function, <span>\\(Q=\\mathbb {R}^{2N}\\setminus ((\\mathbb {R}^N\\setminus \\Omega )\\times (\\mathbb {R}^N\\setminus \\Omega ))\\)</span>, <span>\\(\\Omega \\subset \\mathbb {R}^N\\)</span>, is a bounded domain with Lipschitz boundary, <span>\\(\\lambda &gt;0\\)</span>, <span>\\(N&gt;ps\\)</span>, <span>\\(0&lt;s,\\gamma &lt;1\\)</span>, <span>\\((-\\Delta )_{p}^{s}\\)</span> is the fractional <i>p</i>-Laplacian for <span>\\(1&lt;p&lt;\\infty \\)</span> and <span>\\(p_s^*=\\frac{Np}{N-ps}\\)</span> is the critical Sobolev exponent. We employ a <i>cut-off</i> argument to obtain the existence of <i>k</i> (being arbitrarily large integer) solutions. Furthermore, by using the Moser iteration technique, we prove an uniform <span>\\(L^{\\infty }({\\Omega })\\)</span> bound for the solutions. The novelty of this work lies in proving the existence of small energy solutions by using symmetric mountain pass theorem in spite of the presence of a critical nonlinear term which, of course, is super-linear.\n</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"102 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00382-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of nonnegative solutions to the following nonlocal elliptic problem involving singularity

$$\begin{aligned} \mathfrak {M}\left( \int _{Q}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right) (-\Delta )_{p}^{s} u&=\frac{\lambda }{u^{\gamma }}+u^{p_s^*-1}~\text {in}~\Omega ,\\ u&>0~\text {in}~\Omega ,\\ u&=0~\text {in}~\mathbb {R}^N\setminus \Omega , \end{aligned}$$

where \(\mathfrak {M}\) is the Kirchhoff function, \(Q=\mathbb {R}^{2N}\setminus ((\mathbb {R}^N\setminus \Omega )\times (\mathbb {R}^N\setminus \Omega ))\), \(\Omega \subset \mathbb {R}^N\), is a bounded domain with Lipschitz boundary, \(\lambda >0\), \(N>ps\), \(0<s,\gamma <1\), \((-\Delta )_{p}^{s}\) is the fractional p-Laplacian for \(1<p<\infty \) and \(p_s^*=\frac{Np}{N-ps}\) is the critical Sobolev exponent. We employ a cut-off argument to obtain the existence of k (being arbitrarily large integer) solutions. Furthermore, by using the Moser iteration technique, we prove an uniform \(L^{\infty }({\Omega })\) bound for the solutions. The novelty of this work lies in proving the existence of small energy solutions by using symmetric mountain pass theorem in spite of the presence of a critical nonlinear term which, of course, is super-linear.

涉及奇点和临界指数的分数阶p-Kirchhoff问题至少k个解的存在性
研究了一类涉及奇异点的非局部椭圆型问题的非负解的存在性 $$\begin{aligned} \mathfrak {M}\left( \int _{Q}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right) (-\Delta )_{p}^{s} u&=\frac{\lambda }{u^{\gamma }}+u^{p_s^*-1}~\text {in}~\Omega ,\\ u&>0~\text {in}~\Omega ,\\ u&=0~\text {in}~\mathbb {R}^N\setminus \Omega , \end{aligned}$$在哪里 \(\mathfrak {M}\) 是基尔霍夫函数, \(Q=\mathbb {R}^{2N}\setminus ((\mathbb {R}^N\setminus \Omega )\times (\mathbb {R}^N\setminus \Omega ))\), \(\Omega \subset \mathbb {R}^N\)是一个有李普希茨边界的有界定义域, \(\lambda >0\), \(N>ps\), \(0<s,\gamma <1\), \((-\Delta )_{p}^{s}\) 分数阶的p-拉普拉斯式是吗 \(1<p<\infty \) 和 \(p_s^*=\frac{Np}{N-ps}\) 是临界索博列夫指数。我们使用截止参数来获得k(任意大整数)解的存在性。此外,利用Moser迭代技术,我们证明了一种均匀性 \(L^{\infty }({\Omega })\) 解的边界。这项工作的新颖之处在于,尽管存在一个临界非线性项,当然是超线性的,但利用对称山口定理证明了小能量解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信