Neurovascular phase coherence is altered in Alzheimer's disease.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf007
Juliane Bjerkan, Bernard Meglič, Gemma Lancaster, Jan Kobal, Peter V E McClintock, Trevor J Crawford, Aneta Stefanovska
{"title":"Neurovascular phase coherence is altered in Alzheimer's disease.","authors":"Juliane Bjerkan, Bernard Meglič, Gemma Lancaster, Jan Kobal, Peter V E McClintock, Trevor J Crawford, Aneta Stefanovska","doi":"10.1093/braincomms/fcaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is the commonest form of dementia, but its cause still remains elusive. It is characterized by neurodegeneration, with amyloid-beta and tau aggregation. Recently, however, the roles of the vasculature and the neurovascular unit are being highlighted as important for disease progression. In particular, there is reduced microvascular density, and altered gene expression in vascular and glial cells. Structural changes naturally impact the functioning of the neurovascular unit, and the goal of the study was to quantify the corresponding changes <i>in vivo</i>, non-invasively. Our assessment is based on recordings of brain oxygenation, neuronal and cardiorespiratory activities, captured by functional near-infrared spectroscopy, electroencephalogram, electrocardiogram and respiration effort, respectively. Two groups were compared: an Alzheimer's disease group (N = 19) and a control group (N = 20) of similar age. The time-series were analysed using methods that can capture multi-scale and time-varying oscillations such as the wavelet transform power and wavelet phase coherence. The Alzheimer's disease group shows a significant decrease in the power of brain oxygenation oscillations compared to the control group. There is also a significant global reduction in the phase coherence between brain oxygenation time-series. The neurovascular phase coherence around 0.1 Hz is also significantly reduced in the Alzheimer's disease group. In addition, the average respiration rate is increased in the Alzheimer's disease group compared to the control group. We show that the phase coherence between vascular and neuronal activities is reduced in Alzheimer's disease compared to the control group, indicating altered functioning of the neurovascular unit. The brain oxygenation dynamics reveals reduced power and coordination of oscillations, especially in frequency ranges that are associated with vasomotion. This could lead to reduced oxygen delivery to the brain, which could affect ATP production, and potentially reduce amyloid-beta clearance. These changes in neurovascular dynamics have potential for early diagnosis, as a marker of disease progression, and for evaluating the effect of interventions.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf007"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease is the commonest form of dementia, but its cause still remains elusive. It is characterized by neurodegeneration, with amyloid-beta and tau aggregation. Recently, however, the roles of the vasculature and the neurovascular unit are being highlighted as important for disease progression. In particular, there is reduced microvascular density, and altered gene expression in vascular and glial cells. Structural changes naturally impact the functioning of the neurovascular unit, and the goal of the study was to quantify the corresponding changes in vivo, non-invasively. Our assessment is based on recordings of brain oxygenation, neuronal and cardiorespiratory activities, captured by functional near-infrared spectroscopy, electroencephalogram, electrocardiogram and respiration effort, respectively. Two groups were compared: an Alzheimer's disease group (N = 19) and a control group (N = 20) of similar age. The time-series were analysed using methods that can capture multi-scale and time-varying oscillations such as the wavelet transform power and wavelet phase coherence. The Alzheimer's disease group shows a significant decrease in the power of brain oxygenation oscillations compared to the control group. There is also a significant global reduction in the phase coherence between brain oxygenation time-series. The neurovascular phase coherence around 0.1 Hz is also significantly reduced in the Alzheimer's disease group. In addition, the average respiration rate is increased in the Alzheimer's disease group compared to the control group. We show that the phase coherence between vascular and neuronal activities is reduced in Alzheimer's disease compared to the control group, indicating altered functioning of the neurovascular unit. The brain oxygenation dynamics reveals reduced power and coordination of oscillations, especially in frequency ranges that are associated with vasomotion. This could lead to reduced oxygen delivery to the brain, which could affect ATP production, and potentially reduce amyloid-beta clearance. These changes in neurovascular dynamics have potential for early diagnosis, as a marker of disease progression, and for evaluating the effect of interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信