Metabolic connectivity has greater predictive utility for age and cognition than functional connectivity.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf075
Hamish A Deery, Emma X Liang, Chris Moran, Gary F Egan, Sharna D Jamadar
{"title":"Metabolic connectivity has greater predictive utility for age and cognition than functional connectivity.","authors":"Hamish A Deery, Emma X Liang, Chris Moran, Gary F Egan, Sharna D Jamadar","doi":"10.1093/braincomms/fcaf075","DOIUrl":null,"url":null,"abstract":"<p><p>Recently developed high temporal resolution functional (18F)-fluorodeoxyglucose positron emission tomography (fPET) offers promise as a method for indexing the dynamic metabolic state of the brain <i>in vivo</i> by directly measuring a time series of metabolism at the post-synaptic neuron. This is distinct from functional magnetic resonance imaging (fMRI) that reflects a combination of metabolic, haemodynamic and vascular components of neuronal activity. The value of using fPET to understand healthy brain ageing and cognition over fMRI is currently unclear. Here, we use simultaneous fPET/fMRI to compare metabolic and functional connectivity and test their predictive ability for ageing and cognition. Whole-brain fPET connectomes showed moderate topological similarities to fMRI connectomes in a cross-sectional comparison of 40 younger (mean age 27.9 years; range 20-42) and 46 older (mean 75.8; 60-89) adults. There were more age-related within- and between-network connectivity and graph metric differences in fPET than fMRI. fPET was also associated with performance in more cognitive domains than fMRI. These results suggest that ageing is associated with a reconfiguration of metabolic connectivity that differs from haemodynamic alterations. We conclude that metabolic connectivity has greater predictive utility for age and cognition than functional connectivity and that measuring glucodynamic changes has promise as a biomarker for age-related cognitive decline.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf075"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently developed high temporal resolution functional (18F)-fluorodeoxyglucose positron emission tomography (fPET) offers promise as a method for indexing the dynamic metabolic state of the brain in vivo by directly measuring a time series of metabolism at the post-synaptic neuron. This is distinct from functional magnetic resonance imaging (fMRI) that reflects a combination of metabolic, haemodynamic and vascular components of neuronal activity. The value of using fPET to understand healthy brain ageing and cognition over fMRI is currently unclear. Here, we use simultaneous fPET/fMRI to compare metabolic and functional connectivity and test their predictive ability for ageing and cognition. Whole-brain fPET connectomes showed moderate topological similarities to fMRI connectomes in a cross-sectional comparison of 40 younger (mean age 27.9 years; range 20-42) and 46 older (mean 75.8; 60-89) adults. There were more age-related within- and between-network connectivity and graph metric differences in fPET than fMRI. fPET was also associated with performance in more cognitive domains than fMRI. These results suggest that ageing is associated with a reconfiguration of metabolic connectivity that differs from haemodynamic alterations. We conclude that metabolic connectivity has greater predictive utility for age and cognition than functional connectivity and that measuring glucodynamic changes has promise as a biomarker for age-related cognitive decline.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信