Artificial Intelligence in CT for Predicting Cervical Lymph Node Metastasis in Papillary Thyroid Cancer Patients: A Meta-analysis.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Sixun Zeng, Yingxian Liu, Xinyi Duan, Xin Zhao, Xiangjuan Sun, Fenghua Zhang
{"title":"Artificial Intelligence in CT for Predicting Cervical Lymph Node Metastasis in Papillary Thyroid Cancer Patients: A Meta-analysis.","authors":"Sixun Zeng, Yingxian Liu, Xinyi Duan, Xin Zhao, Xiangjuan Sun, Fenghua Zhang","doi":"10.1016/j.acra.2025.02.007","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This meta-analysis aims to evaluate the diagnostic performance of CT-based artificial intelligence (AI) in diagnosing cervical lymph node metastasis (LNM) of papillary thyroid cancer (PTC).</p><p><strong>Methods: </strong>A systematic search was conducted in PubMed, Embase, and Web of Science databases through December 2024, following PRISMA-DTA guidelines. Studies evaluating CT-based AI models for diagnosing cervical LNM in patients with pathologically confirmed PTC were included. The methodological quality was assessed using a modified QUADAS-2 tool. A bivariate random-effects model was used to calculate pooled sensitivity, specificity, and area under the curve (AUC). Heterogeneity was evaluated using I<sup>2</sup> statistics, and meta-regression analyses were performed to explore potential sources of heterogeneity.</p><p><strong>Results: </strong>17 studies comprising 1778 patients in internal validation sets and 4072 patients in external validation sets were included. In internal validation sets, AI demonstrated a sensitivity of 0.80 (95% CI: 0.71-0.86), specificity of 0.79 (95% CI: 0.73-0.84), and AUC of 0.86 (95% CI: 0.83-0.89). Radiologists suggested comparable performance with sensitivity of 0.77 (95% CI: 0.64-0.87), specificity of 0.79 (95% CI: 0.72-0.85), and AUC of 0.85 (95% CI: 0.81-0.88). Subgroup analyses revealed that deep learning methods outperformed machine learning in sensitivity (0.86 vs 0.72, P<0.05). No significant publication bias was found in internal validation sets for AI diagnosis (P=0.78).</p><p><strong>Conclusion: </strong>CT-based AI showed comparable diagnostic performance to radiologists for detecting cervical LNM in PTC patients, with deep learning models showing superior sensitivity. AI could potentially serve as a valuable diagnostic support tool, though further prospective validation is warranted. Limitations include high heterogeneity among studies and insufficient external validation in diverse populations.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.02.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This meta-analysis aims to evaluate the diagnostic performance of CT-based artificial intelligence (AI) in diagnosing cervical lymph node metastasis (LNM) of papillary thyroid cancer (PTC).

Methods: A systematic search was conducted in PubMed, Embase, and Web of Science databases through December 2024, following PRISMA-DTA guidelines. Studies evaluating CT-based AI models for diagnosing cervical LNM in patients with pathologically confirmed PTC were included. The methodological quality was assessed using a modified QUADAS-2 tool. A bivariate random-effects model was used to calculate pooled sensitivity, specificity, and area under the curve (AUC). Heterogeneity was evaluated using I2 statistics, and meta-regression analyses were performed to explore potential sources of heterogeneity.

Results: 17 studies comprising 1778 patients in internal validation sets and 4072 patients in external validation sets were included. In internal validation sets, AI demonstrated a sensitivity of 0.80 (95% CI: 0.71-0.86), specificity of 0.79 (95% CI: 0.73-0.84), and AUC of 0.86 (95% CI: 0.83-0.89). Radiologists suggested comparable performance with sensitivity of 0.77 (95% CI: 0.64-0.87), specificity of 0.79 (95% CI: 0.72-0.85), and AUC of 0.85 (95% CI: 0.81-0.88). Subgroup analyses revealed that deep learning methods outperformed machine learning in sensitivity (0.86 vs 0.72, P<0.05). No significant publication bias was found in internal validation sets for AI diagnosis (P=0.78).

Conclusion: CT-based AI showed comparable diagnostic performance to radiologists for detecting cervical LNM in PTC patients, with deep learning models showing superior sensitivity. AI could potentially serve as a valuable diagnostic support tool, though further prospective validation is warranted. Limitations include high heterogeneity among studies and insufficient external validation in diverse populations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信