[Research on multi-scale convolutional neural network hand muscle strength prediction model improved based on convolutional attention module].

Q4 Medicine
Yihao Du, Mengyu Sun, Jingjin Li, Xiaoran Wang, Tianfu Cao
{"title":"[Research on multi-scale convolutional neural network hand muscle strength prediction model improved based on convolutional attention module].","authors":"Yihao Du, Mengyu Sun, Jingjin Li, Xiaoran Wang, Tianfu Cao","doi":"10.7507/1001-5515.202406054","DOIUrl":null,"url":null,"abstract":"<p><p>In order to realize the quantitative assessment of muscle strength in hand function rehabilitation and then formulate scientific and effective rehabilitation training strategies, this paper constructs a multi-scale convolutional neural network (MSCNN) - convolutional block attention module (CBAM) - bidirectional long short-term memory network (BiLSTM) muscle strength prediction model to fully explore the spatial and temporal features of the data and simultaneously suppress useless features, and finally achieve the improvement of the accuracy of the muscle strength prediction model. To verify the effectiveness of the model proposed in this paper, the model in this paper is compared with traditional models such as support vector machine (SVM), random forest (RF), convolutional neural network (CNN), CNN - squeeze excitation network (SENet), MSCNN-CBAM and MSCNN-BiLSTM, and the effect of muscle strength prediction by each model is investigated when the hand force application changes from 40% of the maximum voluntary contraction force (MVC) to 60% of the MVC. The research results show that as the hand force application increases, the effect of the muscle strength prediction model becomes worse. Then the ablation experiment is used to analyze the influence degree of each module on the muscle strength prediction result, and it is found that the CBAM module plays a key role in the model. Therefore, by using the model in this article, the accuracy of muscle strength prediction can be effectively improved, and the characteristics and laws of hand muscle activities can be deeply understood, providing assistance for further exploring the mechanism of hand functions <i>.</i></p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 1","pages":"90-95"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202406054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In order to realize the quantitative assessment of muscle strength in hand function rehabilitation and then formulate scientific and effective rehabilitation training strategies, this paper constructs a multi-scale convolutional neural network (MSCNN) - convolutional block attention module (CBAM) - bidirectional long short-term memory network (BiLSTM) muscle strength prediction model to fully explore the spatial and temporal features of the data and simultaneously suppress useless features, and finally achieve the improvement of the accuracy of the muscle strength prediction model. To verify the effectiveness of the model proposed in this paper, the model in this paper is compared with traditional models such as support vector machine (SVM), random forest (RF), convolutional neural network (CNN), CNN - squeeze excitation network (SENet), MSCNN-CBAM and MSCNN-BiLSTM, and the effect of muscle strength prediction by each model is investigated when the hand force application changes from 40% of the maximum voluntary contraction force (MVC) to 60% of the MVC. The research results show that as the hand force application increases, the effect of the muscle strength prediction model becomes worse. Then the ablation experiment is used to analyze the influence degree of each module on the muscle strength prediction result, and it is found that the CBAM module plays a key role in the model. Therefore, by using the model in this article, the accuracy of muscle strength prediction can be effectively improved, and the characteristics and laws of hand muscle activities can be deeply understood, providing assistance for further exploring the mechanism of hand functions .

求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信