Ontology-based prompt tuning for news article summarization.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1520144
A R S Silva, Y H P P Priyadarshana
{"title":"Ontology-based prompt tuning for news article summarization.","authors":"A R S Silva, Y H P P Priyadarshana","doi":"10.3389/frai.2025.1520144","DOIUrl":null,"url":null,"abstract":"<p><p>Ontology-based prompt tuning and abstractive text summarization techniques represent an advanced approach to enhancing the quality and contextual relevance of news article summaries. Despite the progress in natural language processing (NLP) and machine learning, existing methods often rely on extractive summarization, which lacks the ability to generate coherent and contextually rich summaries. Moreover, these approaches rarely integrate domain-specific knowledge, resulting in generic and sometimes inaccurate summaries. In this study, we propose a novel framework, which combines ontology-based prompt tuning with abstractive text summarization to address these limitations. By leveraging ontological knowledge, our model fine-tunes the summarization process, ensuring that the generated summaries are not only accurate but also contextually relevant to the domain. This integration allows for a more nuanced understanding of the text, enabling the generation of summaries that better capture the essence of the news articles. Our evaluation results demonstrate significant improvements over state-of-the-art methods such as BART, BERT, and GPT-3.5. The results show that the proposed architecture achieved a 5.1% higher ROUGE-1 score and a 9.8% improvement in ROUGE-L compared to baseline models. Additionally, our model showed significance in F1, precision, and recall metrics, with major improvements of 6.7, 3.9, and 4.8%, respectively. These results underscore the effectiveness of integrating ontological insights into the prompt tuning process, offering a robust solution for generating high-quality, domain-specific news summaries.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1520144"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1520144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Ontology-based prompt tuning and abstractive text summarization techniques represent an advanced approach to enhancing the quality and contextual relevance of news article summaries. Despite the progress in natural language processing (NLP) and machine learning, existing methods often rely on extractive summarization, which lacks the ability to generate coherent and contextually rich summaries. Moreover, these approaches rarely integrate domain-specific knowledge, resulting in generic and sometimes inaccurate summaries. In this study, we propose a novel framework, which combines ontology-based prompt tuning with abstractive text summarization to address these limitations. By leveraging ontological knowledge, our model fine-tunes the summarization process, ensuring that the generated summaries are not only accurate but also contextually relevant to the domain. This integration allows for a more nuanced understanding of the text, enabling the generation of summaries that better capture the essence of the news articles. Our evaluation results demonstrate significant improvements over state-of-the-art methods such as BART, BERT, and GPT-3.5. The results show that the proposed architecture achieved a 5.1% higher ROUGE-1 score and a 9.8% improvement in ROUGE-L compared to baseline models. Additionally, our model showed significance in F1, precision, and recall metrics, with major improvements of 6.7, 3.9, and 4.8%, respectively. These results underscore the effectiveness of integrating ontological insights into the prompt tuning process, offering a robust solution for generating high-quality, domain-specific news summaries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信