[Optimization of centrifugal artificial heart pump blade parameters based on back propagation neural network and grey wolf optimization algorithm].

Q4 Medicine
Lulu Mu, Huanhuan Duan, Yuan Xiao, Guomin Cui
{"title":"[Optimization of centrifugal artificial heart pump blade parameters based on back propagation neural network and grey wolf optimization algorithm].","authors":"Lulu Mu, Huanhuan Duan, Yuan Xiao, Guomin Cui","doi":"10.7507/1001-5515.202403057","DOIUrl":null,"url":null,"abstract":"<p><p>The impeller, as a key component of artificial heart pumps, experiences high shear stress due to its rapid rotation, which may lead to hemolysis. To enhance the hemolytic performance of artificial heart pumps and identify the optimal combination of blade parameters, an optimization design for existing pump blades is conducted. The number of blades, outlet angle, and blade thickness were selected as design variables, with the maximum shear stress within the pump serving as the optimization objective. A back propagation (BP) neural network prediction model was established using existing simulation data, and a grey wolf optimization algorithm was employed to optimize the blade parameters. The results indicated that the optimized blade parameters consisted of 7 impeller blades, an outlet angle of 25 °, and a blade thickness of 1.2 mm; this configuration achieved a maximum shear stress value of 377 Pa-representing a reduction of 16% compared to the original model. Simulation analysis revealed that in comparison to the original model, regions with high shear stress at locations such as the outer edge, root, and base significantly decreased following optimization efforts, thus leading to marked improvements in hemolytic performance. The coupling algorithm employed in this study has significantly reduced the workload associated with modeling and simulation, while also enhancing the performance of optimization objectives. Compared to traditional optimization algorithms, it demonstrates distinct advantages, thereby providing a novel approach for investigating parameter optimization issues related to centrifugal artificial heart pumps.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 6","pages":"1221-1226"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202403057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The impeller, as a key component of artificial heart pumps, experiences high shear stress due to its rapid rotation, which may lead to hemolysis. To enhance the hemolytic performance of artificial heart pumps and identify the optimal combination of blade parameters, an optimization design for existing pump blades is conducted. The number of blades, outlet angle, and blade thickness were selected as design variables, with the maximum shear stress within the pump serving as the optimization objective. A back propagation (BP) neural network prediction model was established using existing simulation data, and a grey wolf optimization algorithm was employed to optimize the blade parameters. The results indicated that the optimized blade parameters consisted of 7 impeller blades, an outlet angle of 25 °, and a blade thickness of 1.2 mm; this configuration achieved a maximum shear stress value of 377 Pa-representing a reduction of 16% compared to the original model. Simulation analysis revealed that in comparison to the original model, regions with high shear stress at locations such as the outer edge, root, and base significantly decreased following optimization efforts, thus leading to marked improvements in hemolytic performance. The coupling algorithm employed in this study has significantly reduced the workload associated with modeling and simulation, while also enhancing the performance of optimization objectives. Compared to traditional optimization algorithms, it demonstrates distinct advantages, thereby providing a novel approach for investigating parameter optimization issues related to centrifugal artificial heart pumps.

求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信