[Classification of Alzheimer's disease based on multi-example learning and multi-scale feature fusion].

Q4 Medicine
An Zeng, Zhifu Shuai, Dan Pan, Jinzhi Lin
{"title":"[Classification of Alzheimer's disease based on multi-example learning and multi-scale feature fusion].","authors":"An Zeng, Zhifu Shuai, Dan Pan, Jinzhi Lin","doi":"10.7507/1001-5515.202405035","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) classification models usually segment the entire brain image into voxel blocks and assign them labels consistent with the entire image, but not every voxel block is closely related to the disease. To this end, an AD auxiliary diagnosis framework based on weakly supervised multi-instance learning (MIL) and multi-scale feature fusion is proposed, and the framework is designed from three aspects: within the voxel block, between voxel blocks, and high-confidence voxel blocks. First, a three-dimensional convolutional neural network was used to extract deep features within the voxel block; then the spatial correlation information between voxel blocks was captured through position encoding and attention mechanism; finally, high-confidence voxel blocks were selected and combined with multi-scale information fusion strategy to integrate key features for classification decision. The performance of the model was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets. Experimental results showed that the proposed framework improved ACC and AUC by 3% and 4% on average compared with other mainstream frameworks in the two tasks of AD classification and mild cognitive impairment conversion classification, and could find the key voxel blocks that trigger the disease, providing an effective basis for AD auxiliary diagnosis.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 1","pages":"132-139"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202405035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) classification models usually segment the entire brain image into voxel blocks and assign them labels consistent with the entire image, but not every voxel block is closely related to the disease. To this end, an AD auxiliary diagnosis framework based on weakly supervised multi-instance learning (MIL) and multi-scale feature fusion is proposed, and the framework is designed from three aspects: within the voxel block, between voxel blocks, and high-confidence voxel blocks. First, a three-dimensional convolutional neural network was used to extract deep features within the voxel block; then the spatial correlation information between voxel blocks was captured through position encoding and attention mechanism; finally, high-confidence voxel blocks were selected and combined with multi-scale information fusion strategy to integrate key features for classification decision. The performance of the model was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets. Experimental results showed that the proposed framework improved ACC and AUC by 3% and 4% on average compared with other mainstream frameworks in the two tasks of AD classification and mild cognitive impairment conversion classification, and could find the key voxel blocks that trigger the disease, providing an effective basis for AD auxiliary diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信